RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Items tagged with "quantum measurement"

September 24, 2020

Quantum Matchmaking: New NIST System Detects Ultra-Faint Communications Signals Using the Principles of Quantum Physics

Researchers at the National Institute of Standards and Technology (NIST), the Department of Physics at the University of Maryland (UMD) and JQI have devised and demonstrated a system that could dramatically increase the performance of communications networks while enabling record-low error rates in detecting even the faintest of signals. The work could potentially decrease the total amount of energy required for state-of-the-art networks by a factor of 10 to 100. 

June 23, 2017

Quantum Thermometer or Optical Refrigerator?

From NIST News

In an arranged marriage of optics and mechanics, JQI-NIST physicists have created microscopic structural beams that have a variety of powerful uses when light strikes them. Able to operate in ordinary, room-temperature environments, yet exploiting some of the deepest principles of quantum physics, these optomechanical systems can act as inherently accurate thermometers, or conversely, as a type of optical shield that diverts heat. 

November 4, 2015

Photon-counting calibrations

From NIST-PML — Precise measurements of optical power enable activities from fiber-optic communications to laser manufacturing and biomedical imaging — anything requiring a reliable source of light. This situation calls for light-measuring (radiometric) standards that can operate over a wide range of power levels.

June 18, 2013

Quantum Information in Low Light

JQI researchers in the lab of Alan Migdall, demonstrate how one category of photo-detection system can make highly accurate readings of incoming information at the single-photon level by allowing the detector in some instances not to give a conclusive answer.