RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Universal nonequilibrium I-V curve near the two-channel Kondo-Luttinger quantum critical point

TitleUniversal nonequilibrium I-V curve near the two-channel Kondo-Luttinger quantum critical point
Publication TypeJournal Article
Year of Publication2020
AuthorsC-Y. Lin, Y-Y. Chang, C.. Rylands, N.. Andrei, and C-H. Chung
JournalPhys. Rev. B
Volume102
Pagination075145
Date PublishedAUG 28
Type of ArticleArticle
ISSN2469-9950
Abstract

Over recent decades, a growing number of systems, many of them quantum critical, have been shown to exhibit non-Fermi-liquid behavior, but a full analytic understanding of such systems out of equilibrium is still lacking. In this paper, we provide a distinct example with broad applications in correlated mesoscopic systems to two-channel Kondo-Luttinger model where a Kondo impurity couples to two voltage-biased interacting electron leads, experimentally realizable in a dissipative quantum dot. Therein, an exotic quantum phase transition has been known to exist since the 1990s from the one-channel to two-channel Kondo ground states by enhancing electron interactions in the leads, but a controlled analytic approach to this quantum critical point has not yet been established due to the breakdown of weak-coupling perturbation theory near this strong-coupling critical point. We present a controlled method to this long-standing problem by mapping the system in the strong-coupling regime to an effective spin-boson-fermion Hamiltonian. Another type of non-Fermi-liquid quantum critical point is discovered with a distinct logarithmic-in-temperature and -voltage dependence in transport. We further obtain an analytical form for the universal differential conductance out of equilibrium near the transition. Our approach can be further generalized to study nonequilibrium physics of other strong-coupling low-dimensional non-Fermi-liquid fixed points. The relevance of our results for recent experiments is discussed.

DOI10.1103/PhysRevB.102.075145