Title | Topological Insulators in Twisted Transition Metal Dichalcogenide Homobilayers |
Publication Type | Journal Article |
Year of Publication | 2019 |
Authors | F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A.. H. MacDonald |
Journal | Phys. Rev. Lett. |
Volume | 122 |
Pagination | 086402 |
Date Published | FEB 28 |
Type of Article | Article |
ISSN | 0031-9007 |
Abstract | We show that moire bands of twisted homobilayers can be topologically nontrivial, and illustrate the tendency by studying valence band states in +/- K valleys of twisted bilayer transition metal dichalcogenides, in particular, bilayer MoTe2. Because of the large spin-orbit splitting at the monolayer valence band maxima, the low energy valence states of the twisted bilayer MoTe2 at the +K (-K) valley can be described using a two-band model with a layer-pseudospin magnetic field Delta(r) that has the moire period. We show that Delta(r) has a topologically nontrivial skyrmion lattice texture in real space, and that the topmost moire valence bands provide a realization of the Kane-Mele quantum spin-Hall model, i. e., the two-dimensional time-reversal-invariant topological insulator. Because the bands narrow at small twist angles, a rich set of broken symmetry insulating states can occur at integer numbers of electrons per moire cell. |
DOI | 10.1103/PhysRevLett.122.086402 |