RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Integration of quantum dots with lithium niobate photonics

TitleIntegration of quantum dots with lithium niobate photonics
Publication TypeJournal Article
Year of Publication2018
AuthorsS. Aghaeimeibodi, B. Desiatov, J-H. Kim, C-M. Lee, M. Atabey Buyukkaya, A. Karasahin, C. J. K. Richardson, R. P. Leavitt, M. Loncar, and E. Waks
JournalAPPLIED PHYSICS LETTERS
Volume113
Pagination221102
Date PublishedNOV 26
ISSN0003-6951
Abstract

The integration of quantum emitters with integrated photonics enables complex quantum photonic circuits that are necessary for photonic implementation of quantum simulators, computers, and networks. Thin-film lithium niobate is an ideal material substrate for quantum photonics because it can tightly confine light in small waveguides and has a strong electro-optic effect that can switch and modulate single photons at low power and high speed. However, lithium niobate lacks efficient single-photon emitters, which are essential for scalable quantum photonic circuits. We demonstrate deterministic coupling of single-photon emitters with a lithium niobate photonic chip. The emitters are composed of InAs quantum dots embedded in an InP nanobeam, which we transfer to a lithium niobate waveguide with nanoscale accuracy using a pick-and-place approach. An adiabatic taper transfers single photons emitted into the nanobeam to the lithium niobate waveguide with high efficiency. We verify the single photon nature of the emission using photon correlation measurements performed with an on-chip beamsplitter. Our results demonstrate an important step toward fast, reconfigurable quantum photonic circuits for quantum information processing. Published by AIP Publishing.

DOI10.1063/1.5054865