RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip

TitleHybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip
Publication TypeJournal Article
Year of Publication2017
AuthorsJ-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks
JournalNANO LETTERS
Volume17
Pagination7394-7400
Date PublishedDEC
Type of ArticleArticle
ISSN1530-6984
Keywordshybrid integration, Quantum Dots, Silicon quantum photonics, single photons
Abstract

Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.}, %%Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA

DOI10.1021/acs.nanolett.7b03220