Skip to main content

Many-Body Dynamical Localization in a Kicked Lieb-Liniger Gas

Abstract

The kicked rotor system is a textbook example of how classical and quantum dynamics can drastically differ. The energy of a classical particle confined to a ring and kicked periodically will increase linearly in time whereas in the quantum version the energy saturates after a finite number of kicks. The quantum system undergoes Anderson localization in angular-momentum space. Conventional wisdom says that in a many-particle system with short-range interactions the localization will be destroyed due to the coupling of widely separated momentum states. Here we provide evidence that for an interacting one-dimensional Bose gas, the Lieb-Liniger model, the dynamical localization can persist at least for an unexpectedly long time.

Publication Details

Authors
Publication Type
Journal Article
Year of Publication
2020
Journal
Physical Review Letters
Volume
124

Contributors

Groups