Skip to main content

Autotuning of Double-Dot Devices In Situ with Machine Learning


The current practice of manually tuning quantum dots (QDs) for qubit operation is a relatively time-consuming procedure that is inherently impractical for scaling up and applications. In this work, we report on the in situ implementation of a recently proposed autotuning protocol that combines machine learning (ML) with an optimization routine to navigate the parameter space. In particular, we show that a ML algorithm trained using exclusively simulated data to quantitatively classify the state of a double-QD device can be used to replace human heuristics in the tuning of gate voltages in real devices. We demonstrate active feedback of a functional double-dot device operated at millikelvin temperatures and discuss success rates as a function of the initial conditions and the device performance. Modifications to the training network, fitness function, and optimizer are discussed as a path toward further improvement in the success rate when starting both near and far detuned from the target double-dot range.

Publication Details

Publication Type
Journal Article
Year of Publication
Physical Review Applied