RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Physics Frontier Center News

January 12, 2018 | PFC | Research News

Light may unlock a new quantum dance for electrons in graphene

A team of researchers has devised a simple way to tune a hallmark quantum effect in graphene—the material formed from a single layer of carbon atoms—by bathing it in light. Their theoretical work, which was published recently in Physical Review Letters, suggests a way to realize novel quantum behavior that was previously predicted but has so far remained inaccessible in experiments.

January 12, 2018 | PFC | People News

Former JQI researcher wins Chilean L'Oréal-UNESCO Award For Women in Science

Carla Hermann Avigliano, a former postdoc with JQI Fellow Paul Lett, is one of two women scientists to receive the Chilean L'Oréal-UNESCO Award For Women in Science. She was selected for the prize out of 77 applications and cited for her research achievements during her early career.

December 4, 2017 | PFC | Research News

Narrow glass threads synchronize the light emissions of distant atoms

If you holler at someone across your yard, the sound travels on the bustling movement of air molecules. But over long distances your voice needs help to reach its destination—help provided by a telephone or the Internet. Atoms don’t yell, but they can share information through light. And they also need help connecting over long distances.

November 29, 2017 | PFC | Research News

Quantum simulators wield control over more than 50 qubits

Two independent teams of scientists, including one from the Joint Quantum Institute, have used more than 50 interacting atomic qubits to mimic magnetic quantum matter, blowing past the complexity of previous demonstrations. The results appear in this week’s issue of Nature.

November 8, 2017 | PFC | Research News

Ion qubits offer early glimpse of quantum error detection

Computers based on quantum physics promise to solve certain problems much faster than their conventional counterparts. By utilizing qubits—which can have more than just the two values of ordinary bits—quantum computers of the future could perform complex simulations and may solve difficult problems in chemistry, optimization and pattern-recognition.

September 27, 2017 | PFC | Research News

Turning ions into quantum cats

In Schrödinger's famous thought experiment, a cat seems to be both dead and alive—an idea that strains credulity. These days, cats still don't act this way, but physicists now regularly create analogues of Schrödinger's cat in the lab by smearing the microscopic quantum world over longer and longer distances.


Such "cat states" have found many homes, promising more sensitive quantum measurements and acting as the basis for quantum error-correcting codes—a necessary component for future error-prone quantum computers.

September 26, 2017 | PFC | Research News

Sensing atoms caught in ripples of light

Optical fibers are ubiquitous, carrying light wherever it is needed. These glass tunnels are the high-speed railway of information transit, moving data at incredible speeds over tremendous distances. Fibers are also thin and flexible, so they can be immersed in many different environments, including the human body, where they are employed for illumination and imaging.

September 1, 2017 | PFC | Research News

Long-range interactions leave a quantum reminder

Given enough time, a forgotten cup of coffee will lose its appeal and cool to room temperature. One way of telling this tepid tale involves a stupendous number of coffee molecules colliding like billiard balls with themselves and colder molecules in the air above. Those constant collisions siphon energy away from the coffee, bit by bit, in a process that physicists call thermalization.

July 12, 2017 | PFC | Research News

Atomic cousins team up in early quantum networking node

Large-scale quantum computers, which are an active pursuit of many university labs and tech giants, remain years away. But that hasn’t stopped some scientists from thinking ahead, to a time when quantum computers might be linked together in a network or a single quantum computer might be split up across many interconnected nodes.

June 12, 2017 | PFC | Research News

Neural networks take on quantum entanglement

Machine learning, the field that’s driving a revolution in artificial intelligence, has cemented its role in modern technology. Its tools and techniques have led to rapid improvements in everything from self-driving cars and speech recognition to the digital mastery of an ancient board game.

Pages

PFC General Info: pfc-info@umd.edu   Academic and Research Info: Luis Orozco | Atlantic Building 2203 | (301) 405-9740 | lorozco@umd.edu