RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Physics Frontier Center News

June 17, 2019 | PFC | Research News

Ring resonators corner light

Researchers at the Joint Quantum Institute (JQI) have created the first silicon chip that can reliably constrain light to its four corners. The effect, which arises from interfering optical pathways, isn't altered by small defects during fabrication and could eventually enable the creation of robust sources of quantum light.

June 6, 2019 | PFC | People News

Gorshkov student, Kevin Qian, wins 2nd place in prestigious international science fair

Kevin Qian of Montgomery Blair High School placed 2nd in the Physics and Astronomy category at the International Science and Engineering Fair (ISEF) 2019 with his research topic “Heisenberg-Scaling Measurement Protocol for Analytic Functions with Quantum Sensor Networks.” Qian worked with Adjunct Associate Professor Alexey Gorshkov and graduate studen

June 6, 2019 | PFC | People News

JQI Fellow Hafezi Named Finalist for Blavatnik Award

JQI Fellow Mohammad Hafezi has been named a finalist for the 2019 Blavatnik National Awards for Young Scientists.

May 17, 2019 | PFC | Research News

High-resolution imaging technique maps out an atomic wave function

From NIST News

JQI researchers have demonstrated a new way to obtain the essential details that describe an isolated quantum system, such as a gas of atoms, through direct observation. The new method gives information about the likelihood of finding atoms at specific locations in the system with unprecedented spatial resolution. With this technique, scientists can obtain details on a scale of tens of nanometers—smaller than the width of a virus.

March 25, 2019 | PFC | People News

JQI Fellow Manucharyan receives Google Faculty Research Award

Google AI recently announced that JQI Fellow Vlad Manucharyan is among the recipients for this year's Google Faculty Research Awards. The program supports technical research in areas such as machine learning and quantum computing, the latter of which is Manucharyan's area of specialty. In the 2018 awards cycle the program funded 158 of the 910 proposed projects. 

March 6, 2019 | PFC | Research News

Ion experiment aces quantum scrambling test

Researchers at the Joint Quantum Institute have implemented an experimental test for quantum scrambling, a chaotic shuffling of the information stored among a collection of quantum particles. Their experiments on a group of seven atomic ions, reported in the March 7 issue of Nature, demonstrate a new way to distinguish between scrambling—which maintains the amount of information in a quantum system but mixes it up—and true information loss.

February 1, 2019 | PFC | Research News

Glass fibers and light offer new control over atomic fluorescence

Electrons inside an atom whip around the nucleus like satellites around the Earth, occupying orbits determined by quantum physics. Light can boost an electron to a different, more energetic orbit, but that high doesn’t last forever. At some point the excited electron will relax back to its original orbit, causing the atom to spontaneously emit light that scientists call fluorescence.   

December 20, 2018 | PFC | Research News

Cold atoms offer a glimpse of flat physics

These days, movies and video games render increasingly realistic 3-D images on 2-D screens, giving viewers the illusion of gazing into another world. For many physicists, though, keeping things flat is far more interesting.

October 8, 2018 | PFC | Podcast

Black holes: The ultimate cosmic whisks

Chaos. Time travel. Quantum entanglement. Each may play a role in figuring out whether black holes are the universe’s ultimate information scramblers.

In this episode of Relatively Certain, Chris sits down with Brian Swingle, a QuICS Fellow and assistant professor of physics at UMD, to learn about some of the latest theoretical research on black holes—and how experiments to test some of these theories are getting tantalizingly close.

September 17, 2018 | PFC | Research News

Modified superconductor synapse reveals exotic electron behavior

Electrons tend to avoid one another as they go about their business carrying current. But certain devices, cooled to near zero temperature, can coax these loner particles out of their shells. In extreme cases, electrons will interact in unusual ways, causing strange quantum entities to emerge.

August 2, 2018 | PFC | Research News

Complexity test offers new perspective on small quantum computers

State-of-the-art quantum devices are not yet large enough to be called full-scale computers. The biggest comprise just a few dozen qubits—a meager count compared to the billions of bits in an ordinary computer’s memory. But steady progress means that these machines now routinely string together 10 or 20 qubits and may soon hold sway over 100 or more.

Pages

PFC General Info: pfc-info@umd.edu   Academic and Research Info: Luis Orozco | Atlantic Building 2203 | (301) 405-9740 | lorozco@umd.edu