September 27, 2023
In physics, chaos is something unpredictable. A butterfly flapping its wings somewhere in Guatemala might seem insignificant, but those flits and flutters might be the ultimate cause of a hurricane over the Indian Ocean. The butterfly effect captures what it means for something to behave chaotically: Two very similar starting points—a butterfly that either flaps its wings or doesn’t—could lead to two drastically different results, like a hurricane or calm winds.
But there's also a tamer, more subtle form of chaos in which similar starting points don’t cause drastically different results—at least not right away. This tamer chaos, known as ergodicity, is what allows a coffee cup to slowly cool down to room temperature or a piece of steak to heat up on a frying pan. It forms the basis of the field of statistical mechanics, which describes large collections of particles and how they exchange energy to arrive at a shared temperature. Chaos almost always grows out of ergodicity, forming its most eccentric variant.