RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

News

July 12, 2017 | PFC | Research News

Atomic cousins team up in early quantum networking node

Large-scale quantum computers, which are an active pursuit of many university labs and tech giants, remain years away. But that hasn’t stopped some scientists from thinking ahead, to a time when quantum computers might be linked together in a network or a single quantum computer might be split up across many interconnected nodes.A group of physicists at the University of Maryland, working with JQI Fellow Christopher Monroe, are pursuing the second goal, attempting to wire up isolated modules of trapped atomic ions with light. They imagine many modules, each with a hundred or so ions, linked together to form a quantum computer that is inherently scalable: If you want a bigger computer, simply add more modules to the mix.In a paper published recently in Physical Review Letters, Monroe and his collaborators reported on putting together many of the pieces needed to create such a module. It includes two different species of ions: an ytterbium ion for storing information and a barium ion for generating the light that communicates with other nodes.This dual-species approach isolates the storage and communication tasks of a network node. With a single species, manipulating the communication ion with a laser could easily corrupt the storage ion. In several experiments, the researchers demonstrated that they could successfully isolate the two ions from each other, transfer information between them and capture light generated by both ions. 
July 10, 2017 | Podcast

Labs IRL: Boxing up atomic ions

What makes a university physics lab tick? Sean Kelley grabs a mic and heads to a lab that's trying to build an early quantum computer out of atomic ions. Marko Cetina and Kai Hudek, two research scientsts at the University of Maryland who run the lab, explain what it takes to keep things from burning down and muse about the future of quantum computers. This is the first installment of Labs in Real Life—Labs IRL, for short—a recurring segment on Relatively Certain that will explore what it's actually like to work in a university lab. (The work in this lab is supported by the Intelligence Advanced Research Projects Activity (IARPA) LogiQ Program through the U.S. Army Research Office.) This episode of Relatively Certain was produced by Sean Kelley, Emily Edwards and Chris Cesare. It features music by Dave Depper, dustmotes and Podington Bear. Relatively Certain is a production of the Joint Quantum Institute, a research partnership between the University of Maryland and the National Institute of Standards and Technology, and you can find it on iTunes, Google Play or Soundcloud.
July 7, 2017 | People News

JQI student awarded NSF Graduate Research Fellowship

In Spring 2017, Jonathan Francisco San Miguel was awarded a National Science Foundation (NSF) Graduate Research Fellowship. This prestigious NSF fellowship recognizes outstanding students in science, technology, engineering and mathematics fields. Since 2014, he has been working on superconducting qubits in JQI Fellow Vladimir Manucharyan's condensed matter physics laboratory. 
June 23, 2017 | Research News

Tiny magnetic tremors unlock exotic superconductivity

Deep within solids, individual electrons zip around on a nanoscale highway paved with atoms. For the most part, these electrons avoid one another, kept in separate lanes by their mutual repulsion. But vibrations in the atomic road can blur their lanes and sometimes allow the tiny particles to pair up. The result is smooth and lossless travel, and it’s one way to create superconductivity.But there are other, less common ways to achieve this effect. Scientists from the University of Maryland (UMD), the University of California, Irvine (UCI) and Fudan University have now shown that tiny magnetic tremors lead to superconductivity in a material made from metallic nano-layers. And, beyond that, the resulting electron pairs shatter a fundamental symmetry between past and future. Although the material is a known superconductor, these researchers provide a theoretical model and measurement, which, for the first time, unambiguously reveals the material’s exotic nature.
June 23, 2017 | Research News

Quantum Thermometer or Optical Refrigerator?

In an arranged marriage of optics and mechanics, JQI-NIST physicists have created microscopic structural beams that have a variety of powerful uses when light strikes them. Able to operate in ordinary, room-temperature environments, yet exploiting some of the deepest principles of quantum physics, these optomechanical systems can act as inherently accurate thermometers, or conversely, as a type of optical shield that diverts heat. .Described in a pair of new papers in Science and Physical Review Letters, the potential applications include chip-based temperature sensors for electronics and biology that would never need to be adjusted since they rely on fundamental constants of nature; tiny refrigerators that can cool state-of-the-art microscope components for higher-quality images; and improved “metamaterials” that could allow researchers to manipulate light and sound in new ways. 
June 12, 2017 | PFC | Research News

Neural networks take on quantum entanglement

Machine learning, the field that’s driving a revolution in artificial intelligence, has cemented its role in modern technology. Its tools and techniques have led to rapid improvements in everything from self-driving cars and speech recognition to the digital mastery of an ancient board game.Now, physicists are beginning to use machine learning tools to tackle a different kind of problem, one at the heart of quantum physics. In a paper published recently in Physical Review X, researchers from JQI and the Condensed Matter Theory Center (CMTC) at the University of Maryland showed that certain neural networks—abstract webs that pass information from node to node like neurons in the brain—can succinctly describe wide swathes of quantum systems.
May 9, 2017 | Research News

Tiny tug unleashes cryogenic currents

Researchers have found that a small stretch is enough to unleash the exotic electrical properties of a recently discovered topological insulator, unshackling a behavior previously locked away at cryogenic temperatures.The compound, called samarium hexaboride, has been studied for decades. But recently it has enjoyed a surge of renewed interest as scientists first predicted and then discovered that it was a new type of topological insulator—a material that banishes electrical currents from its interior and forces them to travel along its periphery. That behavior only emerges at around 4 degrees above absolute zero, though, thwarting potential applications.Now, experimentalists at the University of California, Irvine (UCI), working with JQI Fellow Victor Galitski and former JQI postdoctoral researcher Maxim Dzero (now at Kent State University), have found a way to activate samarium hexaboride’s cryogenic behavior at much higher temperatures. By stretching small crystals of the metal by less than a percent, the team was able to spot the signature surface currents of a topological insulator at 240 K (minus 33 C)—nearly room temperature and, in any case, a far cry from 4 K. The currents even persisted once the strain was removed.
April 17, 2017 | People News

Recent JQI grad receives APS policy fellowship

Lauren Aycock, a recent JQI graduate researcher, has been awarded a Congressional Science Fellowship from the American Physical Society.The fellowship, which lasts for one year, aims to provide members of Congress with the scientific and technical expertise of trained scientists. In turn, fellows like Aycock get to learn first-hand about public policy and communicate with Congress on behalf of the scientific community. After an orientation sponsored by the American Association for the Advancement of Science, she will begin working either in a congressional office or on a committee.
April 13, 2017 | PFC | Research News

Trapped ions and superconductors face off in quantum benchmark

The race to build larger and larger quantum computers is heating up, with several technologies competing for a role in future devices. Each potential platform has strengths and weaknesses, but little has been done to directly compare the performance of early prototypes. Now, researchers at the JQI have performed a first-of-its-kind benchmark test of two small quantum computers built from different technologies.The team, working with JQI Fellow Christopher Monroe and led by postdoctoral researcher Norbert Linke, sized up their own small-scale quantum computer against a device built by IBM. Both machines use five qubits—the fundamental units of information in a quantum computer—and both machines have similar error rates. But while the JQI device relies on chains of trapped atomic ions, IBM Q uses the movement of charges in a superconducting circuit.

Pages