RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

News

August 8, 2018 | People News | Research News

JQI scientists Monroe and Gorshkov are part of a new, $15 million NSF quantum computing project

NSF has announced a $15 million award to a collaboration of seven institutions, including the University of Maryland. The goal: Build the world’s first practical quantum computer."Quantum computers will change everything about the technology we use and how we use it, and we are still taking the initial steps toward realizing this goal," said NSF Director France Córdova. "Developing the first practical quantum computer would be a major milestone. By bringing together experts who have outlined a path to a practical quantum computer and supporting its development, NSF is working to take the quantum revolution from theory to reality."Dubbed the Software-Tailored Architecture for Quantum co-design (STAQ) project, the effort seeks to demonstrate a quantum advantage over traditional computers within five years using ion trap technology.The project is the result of a National Science Foundation Ideas Lab—a week-long, free-form exchange among researchers from a wide range of fields that aims to spawn creative, collaborative proposals to address a given research challenge. The result of each Ideas Lab is interdisciplinary research that is high-risk, high-reward, cutting-edge and unlikely to be funded through traditional grant mechanisms.JQI Fellow Christopher Monroe will lead the team developing the hardware. JQI Fellow Alexey Gorshkov will be involved in the theory side of the collaboration. Text for this news item was adapted from the Duke University and NSF press releases on the award.  
August 2, 2018 | PFC | Research News

Complexity test offers new perspective on small quantum computers

State-of-the-art quantum devices are not yet large enough to be called full-scale computers. The biggest comprise just a few dozen qubits—a meager count compared to the billions of bits in an ordinary computer’s memory. But steady progress means that these machines now routinely string together 10 or 20 qubits and may soon hold sway over 100 or more.In the meantime, researchers are busy dreaming up uses for small quantum computers and mapping out the landscape of problems they’ll be suited to solving. A paper by researchers from the Joint Quantum Institute (JQI) and the Joint Center for Quantum Information and Computer Science (QuICS), published recently in Physical Review Letters, argues that a novel non-quantum perspective may help sketch the boundaries of this landscape and potentially even reveal new physics in future experiments.
June 28, 2018 | PFC | Research News

Quantum gas reveals first signs of path-bending monopole

Magnets, whether in the form of a bar, horseshoe or electromagnet, always have two poles. If you break a magnet in half, you’ll end up with two new magnets, each with its own magnetic north and south.But some physics theories predict the existence of single-pole magnets—a situation akin to electric charges, which come in either positive or negative chunks. One particular incarnation—called the Yang monopole after its discoverer—was originally predicted in the context of high-energy physics, but it has never been observed. Now, a team at JQI led by postdoctoral researcher Seiji Sugawa and JQI Fellow Ian Spielman have succeeded in emulating a Yang monopole with an ultracold gas of rubidium atoms. The result, which provides another example of using cold quantum gases to simulate other areas of physics, was reported in the June 29 issue of Science.
May 31, 2018 | Podcast

Life at the edge of the world

What's it like living and working in Antarctica? Upon returning from a five-week trip to the Amundsen-Scott South Pole Station, UMD graduate student Liz Friedman sat down with Chris and Emily to chat about her experience. In this episode, Friedman shares some of her memories of station life and explains how plans at the pole don't always pan out. This episode of Relatively Certain was produced by Chris Cesare, Emily Edwards and Dina Genkina. It features music by Dave Depper. Relatively Certain is a production of the Joint Quantum Institute, a research partnership between the University of Maryland and the National Institute of Standards and Technology, and you can find it on iTunes, Google Play or Soundcloud.
April 19, 2018 | PFC | Research News

Atoms may hum a tune from grand cosmic symphony

Researchers playing with a cloud of ultracold atoms uncovered behavior that bears a striking resemblance to the universe in microcosm. Their work, which forges new connections between atomic physics and the sudden expansion of the early universe, was published April 19 in Physical Review X and featured in Physics."From the atomic physics perspective, the experiment is beautifully described by existing theory," says Stephen Eckel, an atomic physicist at the National Institute of Standards and Technology (NIST) and the lead author of the new paper. "But even more striking is how that theory connects with cosmology."In several sets of experiments, Eckel and his colleagues rapidly expanded the size of a doughnut-shaped cloud of atoms, taking snapshots during the process. The growth happens so fast that the cloud is left humming, and a related hum may have appeared on cosmic scales during the rapid expansion of the early universe—an epoch that cosmologists refer to as the period of inflation.The work brought together experts in atomic physics and gravity, and the authors say it is a testament to the versatility of the Bose-Einstein condensate (BEC)—an ultracold cloud of atoms that can be described as a single quantum object—as a platform for testing ideas from other areas of physics."Maybe this will one day inform future models of cosmology," Eckel says. "Or vice versa. Maybe there will be a model of cosmology that’s difficult to solve but that you could simulate using a cold atomic gas."
March 28, 2018 | PFC | Research News

Latest nanowire experiment boosts confidence in Majorana sighting

In the latest experiment of its kind, researchers have captured the most compelling evidence to date that unusual particles lurk inside a special kind of superconductor. The result, which confirms theoretical predictions first made nearly a decade ago at the Joint Quantum Institute (JQI) and the University of Maryland (UMD), will be published in the April 5 issue of Nature. The stowaways, dubbed Majorana quasiparticles, are different from ordinary matter like electrons or quarks—the stuff that makes up the elements of the periodic table. Unlike those particles, which as far as physicists know can’t be broken down into more basic pieces, Majorana quasiparticles arise from coordinated patterns of many atoms and electrons and only appear under special conditions. They are endowed with unique features that may allow them to form the backbone of one type of quantum computer, and researchers have been chasing after them for years.The latest result is the most tantalizing yet for Majorana hunters, confirming many theoretical predictions and laying the groundwork for more refined experiments in the future. In the new work, researchers measured the electrical current passing through an ultra-thin semiconductor connected to a strip of superconducting aluminum—a recipe that transforms the whole combination into a special kind of superconductor.Experiments of this type expose the nanowire to a strong magnet, which unlocks an extra way for electrons in the wire to organize themselves at low temperatures. With this additional arrangement the wire is predicted to host a Majorana quasiparticle, and experimenters can look for its presence by carefully measuring the wire’s electrical response. The new experiment was conducted by researchers from QuTech at the Technical University of Delft in the Netherlands and Microsoft Research, with samples of the hybrid material prepared at the University of California, Santa Barbara and Eindhoven University of Technology in the Netherlands. Experimenters compared their results to theoretical calculations by JQI Fellow Sankar Das Sarma and JQI graduate student Chun-Xiao Liu.

Pages