RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Research News

October 18, 2019 | PFC | Research News

Hybrid Device among First to Meld Quantum and Conventional Computing

Researchers at the University of Maryland (UMD) have trained a small hybrid quantum computer to reproduce the features in a particular set of images.

October 14, 2019 | PFC | Research News

Stretched Photons Recover Lost Interference

The smallest pieces of nature—individual particles like electrons, for instance—are pretty much interchangeable. An electron is an electron is an electron, regardless of whether it’s stuck in a lab on Earth, bound to an atom in some chalky moon dust or shot out of an extragalactic black hole in a superheated jet. In practice, though, differences in energy, motion or location can make it easy to tell two electrons apart.

August 16, 2019 | Research News

Ions clear another hurdle toward scaled-up quantum computing

Scientists at the Joint Quantum Institute (JQI) have been steadily improving the performance of ion trap systems, a leading platform for future quantum computers. Now, a team of researchers led by JQI Fellows Norbert Linke and Christopher Monroe has performed a key experiment on five ion-based quantum bits, or qubits. They used laser pulses to simultaneously create quantum connections between different pairs of qubits—the first time these kinds of parallel operations have been executed in an ion trap.

August 2, 2019 | PFC | Research News

Corkscrew photons may leave behind a spontaneous twist

Everything radiates. Whether it's a car door, a pair of shoes or the cover of a book, anything hotter than absolute zero (i.e., pretty much everything) is constantly shedding radiation in the form of photons, the quantum particles of light.

A twin process—absorption—is usually also present. As photons carry away energy, passers-by from the environment can be absorbed to replenish it. When absorption and emission occur at the same rate, scientists say that an object is in equilibrium with its environment. This often means that object and environment share the same temperature.

June 19, 2019 | Research News

Perfect quantum portal emerges at exotic interface

Researchers at the University of Maryland have captured the most direct evidence to date of a quantum quirk that allows particles to tunnel through a barrier like it’s not even there. The result, featured on the cover of the June 20, 2019 issue of the journal Nature, may enable engineers to design more uniform components for future quantum computers, quantum sensors and other devices.

June 17, 2019 | PFC | Research News

Ring resonators corner light

Researchers at the Joint Quantum Institute (JQI) have created the first silicon chip that can reliably constrain light to its four corners. The effect, which arises from interfering optical pathways, isn't altered by small defects during fabrication and could eventually enable the creation of robust sources of quantum light.

May 28, 2019 | People News | Research News

New Simons Collaboration on "Ultra-Quantum Matter" spans 12 institutions, including UMD

Seventeen theoretical physics faculty across 12 institutions have established a new Simons Collaboration on Ultra-Quantum Matter. The team, which includes Victor Galitski, a Chesapeake Chair Professor of Theoretical Physics in the Department of Physics and Fellow of the Joint Quantum Institute, will investigate innovative ideas about how quantum physics works on macroscopic scales.

May 17, 2019 | PFC | Research News

High-resolution imaging technique maps out an atomic wave function

From NIST News

JQI researchers have demonstrated a new way to obtain the essential details that describe an isolated quantum system, such as a gas of atoms, through direct observation. The new method gives information about the likelihood of finding atoms at specific locations in the system with unprecedented spatial resolution. With this technique, scientists can obtain details on a scale of tens of nanometers—smaller than the width of a virus.

March 6, 2019 | PFC | Research News

Ion experiment aces quantum scrambling test

Researchers at the Joint Quantum Institute have implemented an experimental test for quantum scrambling, a chaotic shuffling of the information stored among a collection of quantum particles. Their experiments on a group of seven atomic ions, reported in the March 7 issue of Nature, demonstrate a new way to distinguish between scrambling—which maintains the amount of information in a quantum system but mixes it up—and true information loss.

February 1, 2019 | PFC | Research News

Glass fibers and light offer new control over atomic fluorescence

Electrons inside an atom whip around the nucleus like satellites around the Earth, occupying orbits determined by quantum physics. Light can boost an electron to a different, more energetic orbit, but that high doesn’t last forever. At some point the excited electron will relax back to its original orbit, causing the atom to spontaneously emit light that scientists call fluorescence.