RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Research News

A computer generated graphic showing intersecting blue beams holding pink cigar shaped tubes that represent atoms levitated in the optical cavity by laser beams.
July 30, 2020 | Research News

Quantum Simulation Stars Light in the Role of Sound

Inside a material, such as an insulator, semiconductor or superconductor, a complex drama unfolds that determines the physical properties. Physicists work to observe these scenes and recreate the script that the actors—electrons, atoms and other particles—play out. It is no surprise that electrons are most frequently the stars in the stories behind electrical properties. But there is an important supporting actor that usually doesn’t get a fair share of the limelight.

A colorful computer-generated map of the electrical current in a graphene channel that makes a sharp turn.
July 22, 2020 | Research News

Diamonds Shine a Light on Hidden Currents in Graphene

It sounds like pure sorcery: using diamonds to observe invisible power swirling and flowing through carefully crafted channels. But these diamonds are a reality. JQI Fellow Ronald Walsworth and Quantum Technology Center (QTC) Postdoctoral Associate Mark Ku, along with colleagues from several other institutions, including Professor Amir Yacoby and Postdoctoral Fellow Tony Zhou at Harvard, have developed a way to use diamonds to see the elusive details of electrical currents.

July 13, 2020 | PFC | Research News

New Quantum Information Speed Limits Depend on the Task at Hand

Unlike speed limits on the highway, most speed limits in physics cannot be disobeyed. For example, no matter how little you care about getting a ticket, you can never go faster than the speed of light. Similarly stringent limits exist for information, too. The speed of light is still the ultimate speed limit, but depending on how information is stored and transmitted, there can be slower limits in practice.

Red, purple and green light shine in the laboratory equipment used to create atomic gases for experiments.
April 27, 2020 | Research News

Quantum Gases Won’t Take the Heat

The quantum world blatantly defies intuitions that we’ve developed while living among relatively large things, like cars, pennies and dust motes. In the quantum world, tiny particles can maintain a special connection over any distance, pass through barriers and simultaneously travel down multiple paths.

A less widely known quantum behavior is dynamical localization, a phenomenon in which a quantum object stays at the same temperature despite a steady supply of energy—bucking the assumption that a cold object will always steal heat from a warmer object.

April 15, 2020 | PFC | Research News

Peeking into a World of Spin-3/2 Materials

Researchers have been pushing the frontiers of the quantum world for over a century. And time after time, spin has been a rich source of new physics.

April 15, 2020 | PFC | Research News

New Protocol Helps Classify Topological Matter

Topological materials have captured the interest of many scientists and may provide the basis for a new era in materials development. On April 10, 2020 in the journal Science Advances, physicists working with Andreas Elben, Jinlong Yu, Peter Zoller and Benoit Vermersch, including JQI Fellow Mohammad Hafezi and former JQI postdoctoral researcher Guanyu Zhu (currently a research staff member at IBM T. J.

April 8, 2020 | PFC | Research News

Charting a Course Toward Quantum Simulations of Nuclear Physics

In nuclear physics, like much of science, detailed theories alone aren’t always enough to unlock solid predictions. There are often too many pieces, interacting in complex ways, for researchers to follow the logic of a theory through to its end. It’s one reason there are still so many mysteries in nature, including how the universe’s basic building blocks coalesce and form stars and galaxies. The same is true in high-energy experiments, in which particles like protons smash together at incredible speeds to create extreme conditions similar to those just after the Big Bang.

March 31, 2020 | Research News

To Tune Up Your Quantum Computer, Better Call an AI Mechanic

A high-end race car engine needs all its components tuned and working together precisely to deliver top-quality performance. The same can be said about the processor inside a quantum computer, whose delicate bits must be adjusted in just the right way before it can perform a calculation. Who’s the right mechanic for this quantum tuneup job? According to a team that includes scientists at JQI and the National Institute of Standards and Technology (NIST), it’s an artificial intelligence, that’s who.

December 23, 2019 | PFC | Research News

Synthetic Magnetism Leads Photons on a 2D Quantum Walk

Randomness governs many things, from the growth of cell colonies and the agglomeration of polymers to the shapes of tendrils that form when you pour cream into a cup of coffee.

Since as early as 1905, scientists have described these seemingly unrelated phenomena in a unified way: as random walks. By imagining that individual particles or molecules are constantly taking steps in a random direction, researchers have successfully modeled many of the complexities of classical physics.

December 17, 2019 | PFC | Research News

Remote Quantum Systems Produce Interfering Photons

Scientists at the Joint Quantum Institute (JQI) have observed, for the first time, interference between particles of light created using a trapped ion and a collection of neutral atoms. Their results could be an essential step toward the realization of a distributed network of quantum computers capable of processing information in novel ways.

Pages