RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

News

April 15, 2020 | PFC | Research News

New Protocol Helps Classify Topological Matter

Topological materials have captured the interest of many scientists and may provide the basis for a new era in materials development. On April 10, 2020 in the journal Science Advances, physicists working with Andreas Elben, Jinlong Yu, Peter Zoller and Benoit Vermersch, including JQI Fellow Mohammad Hafezi and former JQI postdoctoral researcher Guanyu Zhu (currently a research staff member at IBM T. J. Watson Research Center), presented a new method for identifying and characterizing topological invariants on various experimental platforms, testing their protocol in a quantum simulator made of neutral atoms.
April 9, 2020 | Podcast

Donuts, Donut Holes and Topological Superconductors

Topology—the mathematical study of shapes that describes how a donut differs from a donut hole—has turned out to be remarkably relevant to understanding our physical world. For decades, it’s captured the hearts and minds of physicists, who have spent that time uncovering just how deep the connection between topology and physics runs. Among many other things, they’ve unearthed a prediction, born of topology, for a new particle with promising applications to quantum computing. In this episode of Relatively Certain, Dina Genkina sits down with JQI Fellow Jay Sau, an associate professor of physics at UMD, and Johnpierre Paglione, a professor of physics at UMD and the director of the Quantum Materials Center. They take a trip back to the 1980s, when the story of topology in physics began, and arrive at a recent discovery by Paglione and his collaborators of a (possible) topological superconductor.
April 8, 2020 | PFC | Research News

Charting a Course Toward Quantum Simulations of Nuclear Physics

In nuclear physics, like much of science, detailed theories alone aren’t always enough to unlock solid predictions. There are often too many pieces, interacting in complex ways, for researchers to follow the logic of a theory through to its end. But simulations have helped researchers explore many challenging questions. Now, quantum simulators (which exploit quantum effects like superposition and entanglement) promise to bring their power to bear on many problems that have refused to yield to simulations built atop classical computers—including problems in nuclear physics. But to run any simulation, quantum or otherwise, scientists must first determine how to faithfully represent their system of interest in their simulator. They must create a map between the two.
March 31, 2020 | Research News

To Tune Up Your Quantum Computer, Better Call an AI Mechanic

A high-end race car engine needs all its components tuned and working together precisely to deliver top-quality performance. The same can be said about the processor inside a quantum computer, whose delicate bits must be adjusted in just the right way before it can perform a calculation. Who’s the right mechanic for this quantum tuneup job? According to a team that includes scientists at the National Institute of Standards and Technology (NIST), it’s an artificial intelligence, that’s who.The team’s paper in the journal Physical Review Applied outlines a way to teach an AI to make an interconnected set of adjustments to tiny quantum dots, which are among the many promising devices for creating the quantum bits, or “qubits,” that would form the switches in a quantum computer’s processor.
March 6, 2020 | People News

Two JQI Fellows Participate in New MURI Awards

JQI researchers are part of two teams that have received Multidisciplinary University Research Initiative (MURI) awards from the Department of Defense (DoD). DoD awards these competitive grants annually to promote multidisciplinary work by teams spanning several universities. MURI awards focus on topics that are important to DoD and that may promote development of new technologies.
February 7, 2020 | People News

JQI Researchers Receive Quantum Award from Google

JQI Fellow Mohammad Hafezi and JQI Graduate Researchers Alireza Seif and Hwanmun Kim have received an award from Google to support research identifying and developing problems that simple quantum computers might help solve. The work could bridge the divide between demonstrating quantum supremacy, as Google claimed to do in October, and building practical quantum computers that can run established algorithms.“It is an exciting time when industry and academia work together on quantum problems,” Hafezi says. “I am looking forward to collaborating with the Google AI team,” he adds, referring to Google’s artificial intelligence research arm.
February 3, 2020 | People News | Podcast

Labs IRL: A Craving for Code

Software just might be the unsung hero of physics labs. In this episode of Relatively Certain, Dina sits down with JQI postdoctoral researcher and programming aficionado Chris Billington to talk about his passion project—a piece of experimental control software that’s gaining popularity in labs here at the University of Maryland and around the world.
January 13, 2020 | People News

Fifth Edition of “Exploring Quantum Physics” to Launch on Coursera

JQI Fellows Charles Clark and Victor Galitski will launch the fifth edition of their Coursera class on quantum physics Jan. 20, 2020. Alireza Parhizkar, a graduate student at JQI, will serve as teaching assistant.“The course begins by establishing the conceptual grounds of quantum mechanics and promises an exciting journey,” says Parhizkar, who joined Galitski’s research group in the summer of 2019. “It fulfills this promise by immersing the learner in advanced subjects of quantum physics, like superconductivity and path integrals, and illustrating them with colorful exercises.”
December 23, 2019 | PFC | Research News

Synthetic Magnetism Leads Photons on a 2D Quantum Walk

Randomness governs many things, from the growth of cell colonies and the agglomeration of polymers to the shapes of tendrils that form when you pour cream into a cup of coffee.Since as early as 1905, scientists have described these seemingly unrelated phenomena in a unified way: as random walks. By imagining that individual particles or molecules are constantly taking steps in a random direction, researchers have successfully modeled many of the complexities of classical physics.More recently, scientists have brought the idea of a random walk to the quantum world, where the “walkers” can exhibit nonclassical behaviors like quantum superposition and entanglement. These quantum random walks can simulate quantum systems and may eventually be used to implement speedy quantum computing algorithms. However, this will require the walker to move in multiple dimensions (2D and higher), which has been difficult to achieve in a manner that is both practical and scalable.Quantum walks that use photons—the quantum particles of light—are particularly promising, since photons can travel long distances as energy in wave form. However, photons don’t carry an electric charge, which makes it difficult to fully control their motion. In particular, photons won’t respond to magnetic fields—an important tool for manipulating other particles like atoms or electrons.To address these shortcomings, researchers at the Joint Quantum Institute (JQI) have adopted a scalable method for orchestrating 2D quantum random walks of photons—results that were recently published in the journal Physical Review Letters. The research team, led by JQI Fellows Edo Waks and Mohammad Hafezi, developed synthetic magnetic fields in this platform that interact with photons and affect the movement of photonic quantum walkers.
December 17, 2019 | PFC | Research News

Remote Quantum Systems Produce Interfering Photons

Scientists at the Joint Quantum Institute (JQI) have observed, for the first time, interference between particles of light created using a trapped ion and a collection of neutral atoms. Their results could be an essential step toward the realization of a distributed network of quantum computers capable of processing information in novel ways.

Pages