RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

News

June 23, 2017 | Research News

Quantum Thermometer or Optical Refrigerator?

In an arranged marriage of optics and mechanics, JQI-NIST physicists have created microscopic structural beams that have a variety of powerful uses when light strikes them. Able to operate in ordinary, room-temperature environments, yet exploiting some of the deepest principles of quantum physics, these optomechanical systems can act as inherently accurate thermometers, or conversely, as a type of optical shield that diverts heat. .Described in a pair of new papers in Science and Physical Review Letters, the potential applications include chip-based temperature sensors for electronics and biology that would never need to be adjusted since they rely on fundamental constants of nature; tiny refrigerators that can cool state-of-the-art microscope components for higher-quality images; and improved “metamaterials” that could allow researchers to manipulate light and sound in new ways. 
June 12, 2017 | PFC | Research News

Neural networks take on quantum entanglement

Machine learning, the field that’s driving a revolution in artificial intelligence, has cemented its role in modern technology. Its tools and techniques have led to rapid improvements in everything from self-driving cars and speech recognition to the digital mastery of an ancient board game.Now, physicists are beginning to use machine learning tools to tackle a different kind of problem, one at the heart of quantum physics. In a paper published recently in Physical Review X, researchers from JQI and the Condensed Matter Theory Center (CMTC) at the University of Maryland showed that certain neural networks—abstract webs that pass information from node to node like neurons in the brain—can succinctly describe wide swathes of quantum systems.
May 9, 2017 | Research News

Tiny tug unleashes cryogenic currents

Researchers have found that a small stretch is enough to unleash the exotic electrical properties of a recently discovered topological insulator, unshackling a behavior previously locked away at cryogenic temperatures.The compound, called samarium hexaboride, has been studied for decades. But recently it has enjoyed a surge of renewed interest as scientists first predicted and then discovered that it was a new type of topological insulator—a material that banishes electrical currents from its interior and forces them to travel along its periphery. That behavior only emerges at around 4 degrees above absolute zero, though, thwarting potential applications.Now, experimentalists at the University of California, Irvine (UCI), working with JQI Fellow Victor Galitski and former JQI postdoctoral researcher Maxim Dzero (now at Kent State University), have found a way to activate samarium hexaboride’s cryogenic behavior at much higher temperatures. By stretching small crystals of the metal by less than a percent, the team was able to spot the signature surface currents of a topological insulator at 240 K (minus 33 C)—nearly room temperature and, in any case, a far cry from 4 K. The currents even persisted once the strain was removed.
April 17, 2017 | People News

Recent JQI grad receives APS policy fellowship

Lauren Aycock, a recent JQI graduate researcher, has been awarded a Congressional Science Fellowship from the American Physical Society.The fellowship, which lasts for one year, aims to provide members of Congress with the scientific and technical expertise of trained scientists. In turn, fellows like Aycock get to learn first-hand about public policy and communicate with Congress on behalf of the scientific community. After an orientation sponsored by the American Association for the Advancement of Science, she will begin working either in a congressional office or on a committee.
April 13, 2017 | PFC | Research News

Trapped ions and superconductors face off in quantum benchmark

The race to build larger and larger quantum computers is heating up, with several technologies competing for a role in future devices. Each potential platform has strengths and weaknesses, but little has been done to directly compare the performance of early prototypes. Now, researchers at the JQI have performed a first-of-its-kind benchmark test of two small quantum computers built from different technologies.The team, working with JQI Fellow Christopher Monroe and led by postdoctoral researcher Norbert Linke, sized up their own small-scale quantum computer against a device built by IBM. Both machines use five qubits—the fundamental units of information in a quantum computer—and both machines have similar error rates. But while the JQI device relies on chains of trapped atomic ions, IBM Q uses the movement of charges in a superconducting circuit.
April 10, 2017 | PFC | People News

JQI undergraduate researcher Eliot Fenton receives Goldwater Scholarship

Three University of Maryland students have been awarded scholarships by the Barry M. Goldwater Scholarship and Excellence in Education Foundation, which encourages students to pursue advanced study and careers in the sciences, engineering and mathematics. The Goldwater Foundation also recognized a fourth UMD student with an Honorable Mention.Eliot Fenton, along with Christopher Bambic and Prayaag Venkat were among the 240 Barry Goldwater Scholars selected from 1,286 students nominated nationally this year. Natalie Livingston was recognized with an Honorable Mention. The four students, all currently UMD Juniors, plan to pursue doctoral degrees in their areas of study and to become university professors or researchers at government laboratories. 
March 23, 2017 | People News

Phillips named corresponding member of Mexican Academy of Sciences

JQI Fellow, Nobel laureate and Distinguished University Professor William Phillips has been inducted into the Mexican Academy of Sciences (la Academia Mexicana de Ciencias) as a corresponding member. The honor will be marked by an evening event held in Mexico City on March 23.The event includes a talk by Phillips, titled "Time, Einstein and the coolest stuff in the universe," as well as a discussion between Phillips, Mexican Academy of Sciences president Jaime Urrutia Fucugauchi, and JQI Fellow and physics professor Luis Orozco, who nominated Phillips for membership. The entire program will be broadcast live beginning at 6 p.m. EDT.
March 10, 2017 | People News

Wellstood named new UMD Co-Director of JQI

Physics professor and JQI Fellow Fred Wellstood has been appointed the newest UMD Co-Director of JQI. He assumed the role on March 1."Fred has played a major role in the JQI since its founding," says Gretchen Campbell, the current NIST Co-Director of JQI. "Most recently, his tireless efforts helped to design and ultimately build the new Physical Sciences Center at Maryland that many JQI labs now call home. I look forward to working with him to carefully steward JQI’s future."Wellstood came to UMD in 1991 as an Assistant Professor of Physics after earning his Ph.D. from the University of California, Berkeley. Upon arriving, he joined the Center for Superconductivity Research, now known as the Center for Nanophysics and Advanced Materials, and began a fruitful research career studying experimental superconductivity with an eye toward the applications of superconducting quantum interference devices. He was Associate Chair for Undergraduate Education in the Department of Physics from 1999 to 2004 and helped add two new concentration tracks for physics majors at UMD—meteorology and physics education. Since then he has been intimately involved in revamping undergraduate lab offerings. Wellstood is a Fellow of the American Physical Society and holds nearly a dozen patents.He takes over from JQI Fellow Steve Rolston, who recently became Chair of the Department of Physics. Campbell applauds Rolston's five years of service as Co-Director of JQI. "JQI grew tremendously under Steve’s leadership," she says, "and his guidance helped enhance our leading role in basic quantum physics research. As Chair of the Department of Physics, he can continue to champion the efforts of JQI and the Department as a whole."

Pages