RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

News

September 1, 2017 | PFC | Research News

Long-range interactions leave a quantum reminder

Given enough time, a forgotten cup of coffee will lose its appeal and cool to room temperature. One way of telling this tepid tale involves a stupendous number of coffee molecules colliding like billiard balls with themselves and colder molecules in the air above. Those constant collisions siphon energy away from the coffee, bit by bit, in a process that physicists call thermalization.But this story doesn’t mention quantum physics, and scientists think that thermalization must ultimately have a precursor at the quantum level. Recently, scientists have sketched out some of the ways that small quantum systems thermalize, sometimes even when they are almost completely isolated.Last week, in Science Advances, a team of researchers from JQI and Indiana University reported finding a new kind of effect on the road to thermalization—one in which a chain of up to 22 trapped ions, all initially with their quantum spins aligned, can retain a memory of a flipped spin long after it begins to roam through the chain.Unlike previous results in which imperfections trapped such flips near their starting spot, the memory in this experiment comes from the long-range communication of the ions and confirms a theoretical prediction by two of the paper’s authors.
August 2, 2017 | Research News

Simulating the quantum world with electron traps

Quantum behavior plays a crucial role in novel and emergent material properties, such as superconductivity and magnetism. Unfortunately, it is still impossible to calculate the underlying quantum behavior, let alone fully understand it. Scientists of QuTech, the Kavli Institute of Nanoscience in Delft and TNO, in collaboration with ETH Zurich and the University of Maryland, have now succeeded in building an "artificial material" that mimics this type of quantum behavior on a small scale. In doing so, they have laid the foundations for new insights and potential applications. Their work is published today in Nature.
July 31, 2017 | Podcast

Long live MATHUSLA

More than 300 feet underground, looping underneath both France and Switzerland on the outskirts of Geneva, a 16-mile-long ring called the Large Hadron Collider (LHC) smashes protons together at nearly the speed of light. Sifting through the wreckage, scientists have made some profound discoveries about the fundamental nature of our universe. But what if all that chaos underground is shrouding subtle hints of new physics? David Curtin, a postdoctoral researcher at the Maryland Center for Fundamental Physics here at UMD, has an idea for a detector that could be built at the surface—far away from the noise and shrapnel of the main LHC experiments. The project, which he and his collaborators call MATHUSLA, may resolve some of the mysteries that are lingering behind our best theories. This episode of Relatively Certain was produced by Chris Cesare, Emily Edwards, Sean Kelley and Kate Delossantos. It features music by Dave Depper, Podington Bear, Broke for Free, Chris Zabriskie and the LHCsound project. Relatively Certain is a production of the Joint Quantum Institute, a research partnership between the University of Maryland and the National Institute of Standards and Technology, and you can find it on iTunes, Google Play or Soundcloud.
July 12, 2017 | PFC | Research News

Atomic cousins team up in early quantum networking node

Large-scale quantum computers, which are an active pursuit of many university labs and tech giants, remain years away. But that hasn’t stopped some scientists from thinking ahead, to a time when quantum computers might be linked together in a network or a single quantum computer might be split up across many interconnected nodes.A group of physicists at the University of Maryland, working with JQI Fellow Christopher Monroe, are pursuing the second goal, attempting to wire up isolated modules of trapped atomic ions with light. They imagine many modules, each with a hundred or so ions, linked together to form a quantum computer that is inherently scalable: If you want a bigger computer, simply add more modules to the mix.In a paper published recently in Physical Review Letters, Monroe and his collaborators reported on putting together many of the pieces needed to create such a module. It includes two different species of ions: an ytterbium ion for storing information and a barium ion for generating the light that communicates with other nodes.This dual-species approach isolates the storage and communication tasks of a network node. With a single species, manipulating the communication ion with a laser could easily corrupt the storage ion. In several experiments, the researchers demonstrated that they could successfully isolate the two ions from each other, transfer information between them and capture light generated by both ions. 
July 10, 2017 | Podcast

Labs IRL: Boxing up atomic ions

What makes a university physics lab tick? Sean Kelley grabs a mic and heads to a lab that's trying to build an early quantum computer out of atomic ions. Marko Cetina and Kai Hudek, two research scientsts at the University of Maryland who run the lab, explain what it takes to keep things from burning down and muse about the future of quantum computers. This is the first installment of Labs in Real Life—Labs IRL, for short—a recurring segment on Relatively Certain that will explore what it's actually like to work in a university lab. (The work in this lab is supported by the Intelligence Advanced Research Projects Activity (IARPA) LogiQ Program through the U.S. Army Research Office.) This episode of Relatively Certain was produced by Sean Kelley, Emily Edwards and Chris Cesare. It features music by Dave Depper, dustmotes and Podington Bear. Relatively Certain is a production of the Joint Quantum Institute, a research partnership between the University of Maryland and the National Institute of Standards and Technology, and you can find it on iTunes, Google Play or Soundcloud.
July 7, 2017 | People News

JQI student awarded NSF Graduate Research Fellowship

In Spring 2017, Jonathan Francisco San Miguel was awarded a National Science Foundation (NSF) Graduate Research Fellowship. This prestigious NSF fellowship recognizes outstanding students in science, technology, engineering and mathematics fields. Since 2014, he has been working on superconducting qubits in JQI Fellow Vladimir Manucharyan's condensed matter physics laboratory. 
June 23, 2017 | Research News

Tiny magnetic tremors unlock exotic superconductivity

Deep within solids, individual electrons zip around on a nanoscale highway paved with atoms. For the most part, these electrons avoid one another, kept in separate lanes by their mutual repulsion. But vibrations in the atomic road can blur their lanes and sometimes allow the tiny particles to pair up. The result is smooth and lossless travel, and it’s one way to create superconductivity.But there are other, less common ways to achieve this effect. Scientists from the University of Maryland (UMD), the University of California, Irvine (UCI) and Fudan University have now shown that tiny magnetic tremors lead to superconductivity in a material made from metallic nano-layers. And, beyond that, the resulting electron pairs shatter a fundamental symmetry between past and future. Although the material is a known superconductor, these researchers provide a theoretical model and measurement, which, for the first time, unambiguously reveals the material’s exotic nature.
June 23, 2017 | Research News

Quantum Thermometer or Optical Refrigerator?

In an arranged marriage of optics and mechanics, JQI-NIST physicists have created microscopic structural beams that have a variety of powerful uses when light strikes them. Able to operate in ordinary, room-temperature environments, yet exploiting some of the deepest principles of quantum physics, these optomechanical systems can act as inherently accurate thermometers, or conversely, as a type of optical shield that diverts heat. .Described in a pair of new papers in Science and Physical Review Letters, the potential applications include chip-based temperature sensors for electronics and biology that would never need to be adjusted since they rely on fundamental constants of nature; tiny refrigerators that can cool state-of-the-art microscope components for higher-quality images; and improved “metamaterials” that could allow researchers to manipulate light and sound in new ways. 
June 12, 2017 | PFC | Research News

Neural networks take on quantum entanglement

Machine learning, the field that’s driving a revolution in artificial intelligence, has cemented its role in modern technology. Its tools and techniques have led to rapid improvements in everything from self-driving cars and speech recognition to the digital mastery of an ancient board game.Now, physicists are beginning to use machine learning tools to tackle a different kind of problem, one at the heart of quantum physics. In a paper published recently in Physical Review X, researchers from JQI and the Condensed Matter Theory Center (CMTC) at the University of Maryland showed that certain neural networks—abstract webs that pass information from node to node like neurons in the brain—can succinctly describe wide swathes of quantum systems.

Pages