RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Observation of a dynamical purification phase transition in a trapped-ion quantum computer

April 12, 2021 - 11:00am to 11:30am
Crystal Noel
JQI postdoc

 When measurements are interspersed in random quantum circuits, the long-time entanglement of the system exhibits a phase transition with the varying density of measurements. With high measurement rates, a "pure'' phase emerges where the measurements rapidly project the system into a deterministic  state, conditioned on the measurement outcomes. However, in the "mixed'' phase, the dynamics successfully encode quantum information from the initial state  into a quantum error correcting code-space. This "purification phase transition" is reminiscent of a fault-tolerant threshold. Here, we use a single reference qubit entangled with the larger system to efficiently study these quantum phases. We probe the purification dynamics by sampling hundreds of instances of random circuits using a quantum computer with 13 trapped 171Yb+ ions as the qubits. On the accessible circuit depths and system sizes, we find conclusive evidence of the two phases and show numerically that, with modest increases in circuit depth and system size, critical properties of the purification transition clearly emerge.

We are hosting the Spring 2021 JQI Seminars virtually as Zoom meetings. JQI members and affiliates will receive a Zoom link in an email announcing each seminar. For those without access to Zoom, we will also be live streaming each seminar on YouTube. Once a seminar starts, you will find a link to the live stream on our YouTube page at is external)(link is external).