RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Coherent control over diamond nitrogen-vacancy center spins with a mechanical resonator

October 6, 2014 - 11:00am
Gregory Fuchs

We demonstrate coherent Rabi oscillations of diamond nitrogen-vacancy (NV) center spins driven by a mechanical resonator without mediation by a magnetic driving field [1, 2].  Using a bulk-mode acoustic resonator fabricated from single crystal diamond, we exert non-axial ac stress on NV centers positioned at an antinode of a gigahertz frequency mechanical mode.  When the ms = –1 to +1 spin state splitting energy is tuned into resonance with a driven mechanical mode, we observe Δms = ±2 spin transitions, which are forbidden by the magnetic dipole selection rule.  To rule out stray electric and magnetic fields as the origin of these spin transitions, we study the spin signal as a function depth within the diamond resonator.  We find that the spin signal reproduces the periodicity of the acoustic standing wave, confirming the mechanical origin of the spin resonance.   Furthermore, we examine the coherence of mechanically controlled NV center qubits and compare it to the coherence of magnetically controlled spin qubits in the NV center ground state spin manifold.  This work demonstrates direct and coherent coupling between NV center spins and resonator phonons, which has potential for high frequency strain sensing, fundamental research into spin-phonon interactions at the nanoscale, and as a platform for hybrid spin-mechanical quantum systems.

[1] E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, Phys. Rev. Lett. 111, 227602 (2013).

[2] E. R. MacQuarrie, T. A. Gosavi, A. M. Moehle, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, in preparation (2014).

Host: James Williams

CSS 2400
College Park, MD 20742