RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Latest News and Research

Two JQI Fellows Named 2021 Highly Cited Researchers

Two JQI Fellows are included on the Clarivate Web of Science Group’s 2021 list of Highly Cited Researchers, which recognizes influential scientists for their highly cited papers over the preceding decade. The two researchers are Sankar Das Sarma, who is also the Director of the Condensed Matter Theory Center and the Richard E. Prange Chair and Distinguished University Professor of Physics at the University of Marlyand (UMD), and Christopher Monroe, who is also a College Park Professor. Continue Reading

A dark grid of repeating hexagons lies in front of a blue background.
Graphene’s Magic Act Relies on a Small Twist

Atomically thin sheets of carbon, called graphene, have caught many scientists' attention in recent years. Researchers have discovered that stacking layers of graphene two or three at a time and twisting the layers opens fertile new territory for them to explore. Research into these stacked sheets of graphene is like the Wild West, complete with the lure of striking gold and the uncertainty of uncharted territory. Researchers at JQI and the Condensed Matter Theory Center (CMTC) at the University of Maryland are busy creating the theoretical physics foundation that will be a map of this new landscape. And there is... Continue Reading

Hafezi Elected APS Fellow

JQI Fellow Mohammad Hafezi has been elected as a Fellow of the American Physical Society (APS). He was cited for “pioneering theoretical and experimental work in topological photonics and quantum synthetic matter.” Continue Reading

Diamonds Are a Quantum Sensing Scientist’s Best Friend
We all know that diamonds can hold great sentimental (and monetary) value. As luck may have it, diamonds—particularly defective ones, with little errors in their crystal structure—also hold great scientific value. The defects have properties that can only be described by quantum mechanics, and researchers are working on harnessing these properties to pick up on tiny signals coming from individual biological cells. In this episode of Relatively Certain, Dina sits down with defective diamond expert Ronald Walsworth, the founding director of the Quantum Technology Center at the University of Maryland (UMD), as well as Minta Martin professor of electrical and... Continue Reading
Foundational Step Shows Quantum Computers Can Be Better Than the Sum of Their Parts

Pobody’s nerfect—not even the indifferent, calculating bits that are the foundation of computers. But JQI Fellow Christopher Monroe’s group, together with colleagues from Duke University, have made progress toward ensuring we can trust the results of quantum computers even when they are built from pieces that sometimes fail. They have shown in an experiment, for the first time, that an assembly of quantum computing pieces can be better than the worst parts used to make it. In a paper published in the journal Nature on Oct. 4, 2021, the team shared how they took this landmark step toward reliable, practical... Continue Reading

Novel Design May Boost Efficiency of On-Chip Frequency Combs

On the cover of the Pink Floyd album Dark Side of the Moon, a prism splits a ray of light into all the colors of the rainbow. This multicolored medley, which owes its emergence to the fact that light travels as a wave, is almost always hiding in plain sight; a prism simply reveals that it was there. For instance, sunlight is a mixture of many different colors of light, each bobbing up and down with their own characteristic frequency. But taken together the colors merge into a uniform yellowish glow. A prism, or something like it, can also undo this... Continue Reading

Researchers Uncover a ‘Shortcut’ to Thermodynamic Calculations Using Quantum Computers

A collaboration between researchers at JQI and North Carolina State University has developed a new method that uses a quantum computer to measure the thermodynamic properties of a system. The team shared the new approach in a paper published August 18, 2021, in the journal Science Advances. Continue Reading

New Approach to Information Transfer Reaches Quantum Speed Limit

Even though quantum computers are a young technology and aren’t yet ready for routine practical use, researchers have already been investigating the theoretical constraints that will bound quantum technologies. One of the things researchers have discovered is that there are limits to how quickly quantum information can race across any quantum device. These speed limits are called Lieb-Robinson bounds, and, for several years, some of the bounds have taunted researchers: For certain tasks, there was a gap between the best speeds allowed by theory and the speeds possible with the best algorithms anyone had designed. It’s as though no car... Continue Reading

Upcoming Events

Latest News and Research

  • Two JQI Fellows Named 2021 Highly Cited Researchers

    Two JQI Fellows are included on the Clarivate Web of Science Group’s 2021 list of Highly Cited Researchers, which recognizes influential scientists for their highly cited papers over the preceding decade. The two researchers are Sankar Das Sarma, who is also the Director of the Condensed Matter Theory Center and the Richard E... Continue Reading

  • A dark grid of repeating hexagons lies in front of a blue background.
    Graphene’s Magic Act Relies on a Small Twist

    Atomically thin sheets of carbon, called graphene, have caught many scientists' attention in recent years. Researchers have discovered that stacking layers of graphene two or three at a time and twisting the layers opens fertile new territory for them to explore. Research into these stacked sheets of graphene is like the Wild West, complete with the lure of striking gold and the uncertainty of... Continue Reading

  • Hafezi Elected APS Fellow

    JQI Fellow Mohammad Hafezi has been elected as a Fellow of the American Physical Society (APS). He was cited for “pioneering theoretical and experimental work in topological photonics and quantum synthetic matter.” Continue Reading

  • Diamonds Are a Quantum Sensing Scientist’s Best Friend
    We all know that diamonds can hold great sentimental (and monetary) value. As luck may have it, diamonds—particularly defective ones, with little errors in their crystal structure—also hold great scientific value. The defects have properties that can only be described by quantum mechanics, and researchers are working on harnessing these properties to pick up on tiny signals coming from individual... Continue Reading
  • Foundational Step Shows Quantum Computers Can Be Better Than the Sum of Their Parts

    Pobody’s nerfect—not even the indifferent, calculating bits that are the foundation of computers. But JQI Fellow Christopher Monroe’s group, together with colleagues from Duke University, have made progress toward ensuring we can trust the results of quantum computers even when they are built from pieces that sometimes fail. They have shown in an experiment, for the first time, that an... Continue Reading

  • Novel Design May Boost Efficiency of On-Chip Frequency Combs

    On the cover of the Pink Floyd album Dark Side of the Moon, a prism splits a ray of light into all the colors of the rainbow. This multicolored medley, which owes its emergence to the fact that light travels as a wave, is almost always hiding in plain sight; a prism simply reveals that it was there. For instance, sunlight is a mixture of many different colors of light, each bobbing up... Continue Reading

  • Researchers Uncover a ‘Shortcut’ to Thermodynamic Calculations Using Quantum Computers

    A collaboration between researchers at JQI and North Carolina State University has developed a new method that uses a quantum computer to measure the thermodynamic properties of a system. The team shared the new approach in a paper published August 18, 2021, in the journal Science Advances. Continue Reading

  • New Approach to Information Transfer Reaches Quantum Speed Limit

    Even though quantum computers are a young technology and aren’t yet ready for routine practical use, researchers have already been investigating the theoretical constraints that will bound quantum technologies. One of the things researchers have discovered is that there are limits to how quickly quantum information can race across any quantum device. These speed limits are called Lieb-Robinson... Continue Reading