RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Notice: All in-person JQI seminars and events are canceled until Fall 2020.

We will share updates as we receive more guidance from the University of Maryland. Please visit the University's page for more information about the COVID-19 outbreak.

Latest News and Research

Scientists See Train of Photons in a New Light

Flashlight beams don’t clash together like lightsabers because individual units of light—photons—generally don’t interact with each other. Two beams don’t even flicker when they cross paths. But by using matter as an intermediary, scientists have unlocked a rich world of photon interactions. In these early days of exploring the resulting possibilities, researchers are tackling topics like producing indistinguishable single photons and investigating how even just three photons form into basic molecules of light. The ability to harness these exotic behaviors of light is expected to lead to advances in areas such as quantum computing and precision measurement. In a paper recently published... Continue Reading

Mirrors with a green tint can be seen inside a small experimental cavity.
Quantum Simulation Stars Light in the Role of Sound

Inside a material, such as an insulator, semiconductor or superconductor, a complex drama unfolds that determines the physical properties. Physicists work to observe these scenes and recreate the script that the actors—electrons, atoms and other particles—play out. It is no surprise that electrons are most frequently the stars in the stories behind electrical properties. But there is an important supporting actor that usually doesn’t get a fair share of the limelight. This underrecognized actor in the electronic theater is sound, or more specifically the quantum mechanical excitations that carry sound and heat. Scientists treat these quantized vibrations as quantum mechanical particles... Continue Reading

Diamonds Shine a Light on Hidden Currents in Graphene

It sounds like pure sorcery: using diamonds to observe invisible power swirling and flowing through carefully crafted channels. But these diamonds are a reality. JQI Fellow Ronald Walsworth and Quantum Technology Center (QTC) Postdoctoral Associate Mark Ku, along with colleagues from several other institutions, including Professor Amir Yacoby and Postdoctoral Fellow Tony Zhou at Harvard, have developed a way to use diamonds to see the elusive details of electrical currents. The new technique gives researchers a map of the intricate movement of electricity in the microscopic world. The team demonstrated the potential of the technique by revealing the unusual electrical... Continue Reading

New Quantum Information Speed Limits Depend on the Task at Hand
Faster algorithms and tighter theoretical limits narrow the gap between the possible and the doable.

Unlike speed limits on the highway, most speed limits in physics cannot be disobeyed. For example, no matter how little you care about getting a ticket, you can never go faster than the speed of light. Similarly stringent limits exist for information, too. The speed of light is still the ultimate speed limit, but depending on how information is stored and transmitted, there can be slower limits in practice.The story gets particularly subtle when the information is quantum. Quantum information is represented by qubits (the quantum version of ordinary bits), which can be stored in photons, atoms or any number of... Continue Reading

A figure showing a comparison between seven different quantum computers
JQI Quantum Computing Results Selected as “Top Pick” by IEEE Micro

Research by a team that includes JQI Fellow Norbert Linke, UMD physics graduate student Nhung Hong Nguyen, and visiting graduate student Cinthia Huerta Alderete has been selected as one of the 2019 Top Picks in Computer Architecture by IEEE Micro. The work, which compared different kinds of quantum computers, was a collaboration with scientists from Princeton and IBM. IEEE Micro evaluates submissions to all computer architecture conferences that take place throughout the year and selects 12 as Top Picks for their novelty and potential for long-term impact. They invite Top Pick authors to prepare an article for the year’s special issue,... Continue Reading

Hafezi Wins 2020 Simons Foundation Investigator Award

JQI Fellow Mohammad Hafezi has been named a 2020 Simons Investigator in Physics by the New York-based Simons Foundation. Simons Investigator Awards in Mathematics, Physics, Astrophysics and Computer Science support outstanding theoretical scientists in their most productive years, when they are establishing creative new research directions, providing leadership to the field and effectively mentoring junior scientists. Continue Reading

Hafezi Named Blavatnik Award Finalist for Second Consecutive Year

For the second year in a row, JQI Fellow Mohammad Hafezi has been named a finalist of the Blavatnik National Awards for Young Scientists by the Blavatnik Family Foundation and the New York Academy of Sciences.He is among 31 of the nation’s rising stars in science who will compete for three Blavatnik National Laureate Awards in the categories of Chemistry, Physical Sciences & Engineering, and Life Sciences, and is one of 11 finalists in Physical Sciences & Engineering. Each of the three 2020 National Laureates will win $250,000—the world’s largest unrestricted prize for early-career scientists. Continue Reading

Manucharyan Receives Second Consecutive Google Faculty Research Award

JQI Fellow Vladimir Manucharyan has received a 2019 Google Faculty Research Award. It is the second consecutive year that Manucharyan, who is also an Associate Professor of Physics at UMD, has earned the honor. This year’s award will continue to support research by Manucharyan and his team into quantum computing hardware based on superconducting circuits. They are pursuing the development of special quantum bits—called fluxonium qubits—for use in a new generation of computers. Continue Reading

Upcoming Events

August 11, 2020
Dmitry Green | (AppliedTQC), Joint CMTC-QuICS seminar

Latest News and Research

  • Scientists See Train of Photons in a New Light

    Flashlight beams don’t clash together like lightsabers because individual units of light—photons—generally don’t interact with each other. Two beams don’t even flicker when they cross paths. But by using matter as an intermediary, scientists have unlocked a rich world of photon interactions. In these early days of exploring the resulting possibilities, researchers are tackling topics like... Continue Reading

  • Mirrors with a green tint can be seen inside a small experimental cavity.
    Quantum Simulation Stars Light in the Role of Sound

    Inside a material, such as an insulator, semiconductor or superconductor, a complex drama unfolds that determines the physical properties. Physicists work to observe these scenes and recreate the script that the actors—electrons, atoms and other particles—play out. It is no surprise that electrons are most frequently the stars in the stories behind electrical properties. But there is an... Continue Reading

  • Diamonds Shine a Light on Hidden Currents in Graphene

    It sounds like pure sorcery: using diamonds to observe invisible power swirling and flowing through carefully crafted channels. But these diamonds are a reality. JQI Fellow Ronald Walsworth and Quantum Technology Center (QTC) Postdoctoral Associate Mark Ku, along with colleagues from several other institutions, including Professor Amir Yacoby and Postdoctoral Fellow Tony Zhou at Harvard, have... Continue Reading

  • New Quantum Information Speed Limits Depend on the Task at Hand
    Faster algorithms and tighter theoretical limits narrow the gap between the possible and the doable.

    Unlike speed limits on the highway, most speed limits in physics cannot be disobeyed. For example, no matter how little you care about getting a ticket, you can never go faster than the speed of light. Similarly stringent limits exist for information, too. The speed of light is still the ultimate speed limit, but depending on how information is stored and transmitted, there can be slower... Continue Reading

  • A figure showing a comparison between seven different quantum computers
    JQI Quantum Computing Results Selected as “Top Pick” by IEEE Micro

    Research by a team that includes JQI Fellow Norbert Linke, UMD physics graduate student Nhung Hong Nguyen, and visiting graduate student Cinthia Huerta Alderete has been selected as one of the 2019 Top Picks in Computer Architecture by IEEE Micro. The work, which compared different kinds of quantum computers, was a collaboration with... Continue Reading

  • Hafezi Wins 2020 Simons Foundation Investigator Award

    JQI Fellow Mohammad Hafezi has been named a 2020 Simons Investigator in Physics by the New York-based Simons Foundation. Simons Investigator Awards in Mathematics, Physics, Astrophysics and Computer Science support... Continue Reading

  • Hafezi Named Blavatnik Award Finalist for Second Consecutive Year

    For the second year in a row, JQI Fellow Mohammad Hafezi has been named a finalist of the Blavatnik National Awards for Young Scientists by the Blavatnik Family Foundation and the New York Academy of Sciences.He is among 31 of the nation’s rising stars in science who will compete for three Blavatnik National Laureate Awards in the categories of... Continue Reading

  • Manucharyan Receives Second Consecutive Google Faculty Research Award

    JQI Fellow Vladimir Manucharyan has received a 2019 Google Faculty Research Award. It is the second consecutive year that Manucharyan, who is also an Associate Professor of Physics at UMD, has earned the honor. This year’s award will continue to support research by Manucharyan and his team into quantum computing hardware based on superconducting circuits. They are pursuing the development of... Continue Reading

Latest Tweets

Latest Tweets