RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Multi-channel modelling of the formation of vibrationally cold polar KRb molecules

TitleMulti-channel modelling of the formation of vibrationally cold polar KRb molecules
Publication TypeJournal Article
Year of Publication2009
AuthorsS. Kotochigova, E. Tiesinga, and P. S. Julienne
JournalNew J. Phys.
Date Publishedmay

We describe the theoretical advances that influenced the experimental creation of vibrationally and translationally cold polar 40 K 87 Rb molecules [1, 2]. Cold molecules were created from very-weakly bound molecules formed by magnetic field sweeps near a Feshbach resonance in collisions of ultra-cold 40 K and 87 Rb atoms. Our analysis include the multi-channel bound-state calculations of the hyperfine and Zeeman mixed X 1 $Σ$ + and a 3 $Σ$ + vibrational levels. We find excellent agreement with the hyperfine structure observed in experimental data. In addition, we studied the spin–orbit mixing in the intermediate state of the Raman transition. This allowed us to investigate its effect on the vibrationally averaged transition dipole moment to the lowest rovibrational level of the X 1 $Σ$ + state. Finally, we obtained an estimate of the polarizability of the initial and final rovibrational states of the Raman transition near frequencies relevant for optical trapping of the molecules.


Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to