RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Demonstration of a scalable, multiplexed ion trap for quantum information processing

TitleDemonstration of a scalable, multiplexed ion trap for quantum information processing
Publication TypeJournal Article
Year of Publication2009
AuthorsD. R. Leibrandt, J. Labaziewicz, R. J. Clark, I. L. Chuang, R. J. Epstein, C. Ospelkaus, J. H. Wesenberg, J. J. Bollinger, D. Leibfried, D. J. Wineland, D. Stick, J. D. Sterk, C. Monroe, C. - S. Pai, Y. Low, R. Frahm, and R. E. Slusher
Pagination18
Date Publishedapr
Keywords2009
Abstract

A scalable, multiplexed ion trap for quantum information processing is fabricated and tested. The trap design and fabrication process are optimized for scalability to small trap size and large numbers of interconnected traps, and for integration of control electronics and optics. Multiple traps with similar designs are tested with Cd+, Mg+, and Sr+ ions at room temperature and with Sr+ at 6 K, with respective ion lifetimes of 90 s, 300 +/- 30 s, 56 +/- 6 s, and 4.5 +/- 1.1 hours. The motional heating rate for Mg+ at room temperature and a trap frequency of 1.6 MHz is measured to be 7 +/- 3 quanta per millisecond. For Sr+ at 6 K and 540 kHz the heating rate is measured to be 220 +/- 30 quanta per second.

URLhttp://arxiv.org/abs/0904.2599

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu