RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Cruising through molecular bound-state manifolds with radiofrequency

TitleCruising through molecular bound-state manifolds with radiofrequency
Publication TypeJournal Article
Year of Publication2008
AuthorsF. Lang, P. v. d. Straten, B. Brandstätter, G. Thalhammer, K. Winkler, P. S. Julienne, R. Grimm, and J. Hecker Denschlag
JournalNat. Phys.
Volume4
Pagination223–226
Date Publishedjan
ISSN1745-2473
Keywords2008, Single Fellow
Abstract

The production of ultracold molecules with their rich internal structure is currently attracting considerable interest1, 2, 3, 4. For future experiments, it will be important to efficiently transfer these molecules from their initial internal quantum state at production to other quantum states of interest. Transfer tools such as optical Raman schemes5, 6, radiofrequency transitions (see, for example, ref. 7) or magnetic field ramping8, 9 exist, but are either technically involved or limited in their applicability. Here, we demonstrate a simple, highly efficient hybrid transfer method that overcomes a number of the previous limitations. The scheme is based on magnetically tuned mixing of two neighbouring molecular levels, which enables otherwise forbidden radiofrequency transitions between them. By repeating this process at various magnetic fields, molecules can be successively transported through a large manifold of quantum states. Applying nine transfers, we convert very weakly bound Feshbach molecules to a much more deeply bound level with a binding energy corresponding to 3.6 GHz. As an important spin-off of our experiments, we demonstrate a high-precision spectroscopy method for investigating level crossings.

URLhttp://dx.doi.org/10.1038/nphys838

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu