RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Condensed Matter Devices: SQUIDS and Semiconductors

Solid state refridgerator, E. Edwards, JQI

Image credit: E. Edwards, JQI

The creation of macroscopic systems that can function as if they were individual quantum objects is an active area of JQI research. This is possible because some quantum effects occur on relatively large spatial scales. One of them is the phenomenon known as "tunneling," in which electrons can pass across an insulating barrier in superconducting structures called Josephson junctions. Although they are small by ordinary standards (on the order of a micron, or millionth of a meter), the junctions are about 10,000 times larger than an individual atom.

One or more of these devices can be arranged so that each one takes on the hallmark property of an atomic qubit: superposition of states. Moreover, the states of different Josephson junctions, or "artificial atoms," can be entangled to provide the same sort of information-transfer and logic-gate potential found in atomic qubits. JQI researchers are testing various configurations of these junctions to find optimal designs and improve performance.

Additionally, the Physics Frontier Center at JQI supports an experiment that seeks to couple ultracold atoms with superconducting qubits. Such a hybrid quantum system combines some of the advantages of two platforms, thus offering another path in developing scalable quantum information architectures.

Semiconducting materials are another scheme for realizing quantum devices. Two-dimensional electron gases can be formed at the interface of two semiconductors. This system offers a playground for studying quantum physics in reduced dimensions. JQI researchers also study how semiconductor devices on atomic-size scale can be utilized for quantum computing.

Many of the JQI fellows involved the above research are also affiliated with the Condensed Matter Theory Center and/or the Center for Nanophysics and Advanced Materials at the University of Maryland.

JQI Experimental Research Groups

JQI Theoretical Research Groups

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu