RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Physics Frontier Center News

Computers based on quantum physics promise to solve certain problems much faster than their conventional counterparts. By utilizing qubits—which can have more than just the two values of ordinary bits—quantum computers of the future could perform complex simulations and may solve difficult problems in chemistry, optimization and pattern-recognition.

But building a large quantum computer—one with thousands or millions of qubits—is hard because qubits are very fragile. Small...

JQI researchers perform a quantum simulation of the 1D Dirac equation, by assembling an analogue system of neutral atoms in a Bose-Einstein condensate.

Peter Kordell, a UMD undergrad, was awarded the IPST Monroe Martin Prize for Undergraduate Research in Physics.

The photodetectors in Alan Migdall’s lab often see no light at all, and that’s a good thing since he and his JQI (*) colleagues perform physics experiments that require very little light, the better to study subtle quantum effects. Their latest achievement, described here, is to develop a new way of counting photons to understand the sources and modes of light in modern physics experiments....

Unfortunately, qubits are fragile; they dissipate in the face of interactions with their environment. A new JQI semiconductor-based qubit design ably addresses this issue of qubit robustness.

JQI researchers in the lab of Alan Migdall, demonstrate how one category of photo-detection system can make highly accurate readings of incoming information at the single-photon level by allowing the detector in some instances not to give a conclusive answer.

JQI Researchers have reported* the first observation of the "spin Hall effect" in a Bose-Einstein condensate.This is a step toward applications in "atomtronics"—the use of ultracold atoms as circuit components.

JQI researchers under the direction of Chris Monroe have produced quantum entanglement between a single atom’s motion and its spin state thousands of times faster than previously reported, demonstrating unprecedented control of atomic motion.

Rajibul Islam was recently awarded UMDs Distinguished Dissertation Award for his thesis work on quantum magnetism with ions in Chris Monroe's Trapped Ion Quantum Information group.

This week’s issue of Science Magazine features new results from the research group of Christopher Monroe at the JQI, where they explored how to frustrate a quantum magnet comprised of sixteen atomic ions – to date the largest ensemble of qubits to perform a simulation of quantum matter.

All computers, even the future quantum versions, use logic operations or “gates,” which are the fundamental building blocks of computational processes. JQI scientists, led by Professor Edo Waks, have performed an ultrafast logic gate on a photon, using a semiconductor quantum dot.

Pages