RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Physics Frontier Center News

Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. Now, a collaboration of researchers from the Joint Quantum Institute (JQI), led by JQI Fellows Mohammad Hafezi and Edo Waks, has created a photonic chip that both generates single photons, and steers them around. The device, described in the Feb. 9 issue of...

A big part of the burgeoning science of quantum computation is reliably storing and processing information in the form of quantum bits, or qubits.  One of the obstacles to this goal is the difficulty of preserving the fragile quantum condition of qubits against unwanted outside influence even as the qubits interact among themselves in a programmatic way. 

Spin qubits are one of the most...

Optical fibers are hair-like threads of glass used to guide light. Fibers of exceptional purity have proved an excellent way of sending information over long distances and are the foundation of modern telecommunication systems. JQI researchers in collaboration with scientists from the Naval Research Laboratory have developed a new technique for visualizing light propagation through an optical...

If you’re designing a new computer, you want it to solve problems as fast as possible. Just how fast is possible is an open question when it comes to quantum computers, but JQI physicists have narrowed the theoretical limits for where that “speed limit” is. The work implies that quantum processors will work more slowly than some research has suggested. 
The work offers a better...

The 2014 chemistry Nobel Prize recognized important microscopy research that enabled greatly improved spatial resolution. This innovation, resulting in nanometer resolution, was made possible by making the source (the emitter) of the illumination  quite small and by moving it quite close to the object being imaged.   One problem with this approach is that in such proximity, the emitter and...

The OSA announced JQI Fellow and NIST scientist Paul Julienne as the 2015 William F. Meggers Award recipient. The William F. Meggers Award recognizes outstanding work in spectroscopy. According to the citation, Julienne is being recognized for "seminal contributions to precision photoassociation and magnetic-Feshbach spectroscopy of...

JQI researchers, under the direction of Christopher Monroe have demonstrated modular entanglement between two atomic systems, separated by one meter. Here, photons are the long distance information carriers entangling multiple qubit modules. Inside of a single module, quantized collective vibrations called phonons connect individual qubits. In the latest result, one module contains two qubits...

Strongly correlated electronic systems, like superconductors, display remarkable electronic and magnetic properties, and are of considerable research interest. These systems are fermionic, meaning they are composed of a class of particle called a fermion. Bosonic systems, composed another family of particles called bosons, offer a level of control often not possible in solid state systems....

JQI Fellow and Assistant Professor of physics Vladimir Manucharyan has received a National Science Foundation CAREER Award. His proposal, entitled “Realizing the ultrastrong coupling regime of quantum electrodynamics using high-impedance Josephson superconducting circuits,” will receive five years of funding. NSF funds research in...

Alan Migdall and Elohim Becerra and their colleagues at the Joint Quantum Institute have devised an optical detection scheme with an error rate 25 times lower than the fundamental limit of the best conventional detector. They did this by employing not passive detection of incoming light pulses. Instead the light is split up and measured numerous times.

boson spin-hall thumb

Every electrical device is enabled by the movement of charge, or current. ‘Spintronics’ taps into a different electronic attribute, an intrinsic quantum property known as spin, and may yield devices that operate on the basis of spin-transport. JQI/CMTC theorists have been developing a model for what happens when spins are trapped in an optical lattice structure with a “double-valley” feature....

Pages