RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

PFC All News

Transistors are tiny switches that form the bedrock of modern computing—billions of them route electrical signals around inside a smartphone, for instance.

Quantum computers will need analogous hardware to manipulate quantum information. But the design constraints for this new technology are stringent, and today’s most advanced processors can’t be...

Eliot Fenton, UMD physics major, was among those recognized as a 2018 Maryland ‘Undergraduate Researcher of the Year.’ This award is eligible for exemplary seniors who have been nominated by their faculty advisors.  Fenton earned this award for his wide-ranging experimental physics research accomplishments.

From 2015-2017 Fenton worked on optical nanofibers with JQI Fellow...

Researchers playing with a cloud of ultracold atoms uncovered behavior that bears a striking resemblance to the universe in microcosm. Their work, which forges new connections between atomic physics and the sudden expansion of the early universe, was published April 19 in Physical Review X and featured in Physics."From the atomic physics perspective, the experiment is...

In the latest experiment of its kind, researchers have captured the most compelling evidence to date that unusual particles lurk inside a special kind of superconductor. The result, which confirms theoretical predictions first made nearly a decade ago at the Joint Quantum Institute (JQI) and the University of Maryland (UMD), will be published in the April 5 issue of Nature. The...

Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. Now, a collaboration of researchers from the Joint Quantum Institute (JQI), led by JQI Fellows Mohammad Hafezi and Edo Waks, has created a photonic chip that both generates single photons, and steers them around. The...

If you holler at someone across your yard, the sound travels on the bustling movement of air molecules. But over long distances your voice needs help to reach its destination—help provided by a telephone or the Internet. Atoms don’t yell, but they can share information through light. And they also need help connecting over long distances.Now, researchers at the Joint Quantum Institute (JQI)...

Computers based on quantum physics promise to solve certain problems much faster than their conventional counterparts. By utilizing qubits—which can have more than just the two values of ordinary bits—quantum computers of the future could perform complex simulations and may solve difficult problems in chemistry, optimization and pattern-recognition.But building a large quantum computer—one...

In Schrödinger's famous thought experiment, a cat seems to be both dead and alive—an idea that strains credulity. These days, cats still don't act this way, but physicists now regularly create analogues of Schrödinger's cat in the lab by smearing the microscopic quantum world over longer and longer distances.
Such "cat states" have found many homes, promising more sensitive quantum...

Optical fibers are ubiquitous, carrying light wherever it is needed. These glass tunnels are the high-speed railway of information transit, moving data at incredible speeds over tremendous distances. Fibers are also thin and flexible, so they can be immersed in many different environments, including the human body, where they are employed for illumination and imaging.Physicists use fibers, too...

Consider, for a moment, the humble puddle of water. If you dive down to nearly the scale of molecules, it will be hard to tell one spot in the puddle from any other. You can shift your gaze to the left or right, or tilt your head, and the microscopic bustle will be identical—a situation that physicists call highly symmetric.That all changes abruptly when the puddle freezes. In contrast to...

When your heart beats, blood courses through your veins in waves of pressure. These pressure waves manifest as your pulse, a regular rhythm unperturbed by the complex internal structure of the body. Scientists call such robust waves solitons, and in many ways they behave more like discrete particles than waves. Soliton theory may aid in the understanding of tsunamis, which—unlike other water...

Optical fibers are the backbone of modern communications, shuttling information from A to B through thin glass filaments as pulses of light. They are used extensively in telecommunications, allowing information to travel at near the speed of light virtually without loss.These days, biologists, physicists and other scientists regularly use optical fibers to pipe light around inside their labs....

Theoretical physicists studying the behavior of ultra-cold atoms have discovered a new source of friction, dispensing with a century-old paradox in the process. Their prediction, which experimenters may soon try to verify, was reported recently in Physical Review Letters.The friction afflicts certain arrangements of atoms in a Bose-Einstein Condensate (BEC), a quantum state of matter in which...

Nature doesn’t have the best memory. If you fill a box with air and divide it in half with a barrier, it’s easy to tell molecules on the left from molecules on the right. But after removing the barrier and waiting a short while, the molecules get mixed together, and it becomes impossible to tell where a given molecule started. The air-in-a-box system loses any memory of its initial conditions....

The swirling field of a magnet—rendered visible by a sprinkling of iron filings—emerges from the microscopic behavior of atoms and their electrons. In permanent magnets, neighboring atoms align and lock into place to create inseparable north and south poles. For other materials, magnetism can be induced by a field strong enough to coax atoms into alignment.In both cases, atoms are typically...

The behavior of a few rubidium atoms in a cloud of 40,000 hardly seems important. But a handful of the tiny particles with the wrong energy may cause a cascade of effects that could impact future quantum computers. Some proposals for quantum devices use Rydberg atoms—atoms with highly excited electrons that roam far from the nucleus—because they interact strongly with each other and offer easy...

Jay Deep Sau, an assistant professor of physics at the University of Maryland and fellow of the Joint Quantum Institute, was awarded a Sloan Research Fellowship for 2016. This award, granted by the Alfred P. Sloan Foundation, identifies 126...

Today’s networks use electronic circuits to store information and optical fibers to carry it, and quantum networks may benefit from a similar framework. Such networks would transmit qubits – quantum versions of ordinary bits – from place to place and would offer unbreakable security for the transmitted information. But researchers must first develop ways for qubits that are better at storing...

Harnessing quantum systems for information processing will require controlling large numbers of basic building blocks called qubits. The qubits must be isolated, and in most cases cooled such that, among other things, errors in qubit operations do not overwhelm the system, rendering it useless. Led by JQI Fellow Christopher Monroe, physicists have recently demonstrated important steps towards...

From NIST-PML--JQI scientists have achieved a major milestone in simulating the dynamics of condensed-matter systems – such as the behavior of charged particles in semiconductors and other materials – through manipulation of carefully controlled quantum-mechanical models.

Going beyond their pioneering experiments in 2009 (the creation of “...

Pages

PFC General Info: pfc-info@umd.edu   Academic and Research Info: Luis Orozco | Atlantic Building 2203 | (301) 405-9740 | lorozco@umd.edu