RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Physics Frontier Center News

Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. Now, a collaboration of researchers from the Joint Quantum Institute (JQI), led by JQI Fellows Mohammad Hafezi and Edo Waks, has created a photonic chip that both generates single photons, and steers them around. The device, described in the Feb. 9 issue of...

JQI Researchers have reported* the first observation of the "spin Hall effect" in a Bose-Einstein condensate.This is a step toward applications in "atomtronics"—the use of ultracold atoms as circuit components.

JQI researchers under the direction of Chris Monroe have produced quantum entanglement between a single atom’s motion and its spin state thousands of times faster than previously reported, demonstrating unprecedented control of atomic motion.

Rajibul Islam was recently awarded UMDs Distinguished Dissertation Award for his thesis work on quantum magnetism with ions in Chris Monroe's Trapped Ion Quantum Information group.

This week’s issue of Science Magazine features new results from the research group of Christopher Monroe at the JQI, where they explored how to frustrate a quantum magnet comprised of sixteen atomic ions – to date the largest ensemble of qubits to perform a simulation of quantum matter.

All computers, even the future quantum versions, use logic operations or “gates,” which are the fundamental building blocks of computational processes. JQI scientists, led by Professor Edo Waks, have performed an ultrafast logic gate on a photon, using a semiconductor quantum dot.

Recently Science Magazine invited JQI fellow Chris Monroe and Duke Professor Jungsang Kim to speculate on ion trap technology as a scalable option for quantum information processing. The article is highlighted on the cover of this week’s (March 8, 2013) issue, which is dedicated to quantum information. The cover portrays a photograph of a surface trap that was fabricated by...

An old material gets a new name, and with it, topological insulators have another chance to shine. Samarium hexaboride (SmB6) has been around since the late 1960s--but understanding its low temperature behavior has remained a mystery until recently. Experimentalists* have recently confirmed that this material is the first true 3D topological insulator—as originally predicted by JQI/...

PFC-supported scientists at JQI have created the first controllable atomic circuit that functions analogously to a superconducting quantum interference device (SQUID) and allows operators to select a particular quantum state of the system at will.

NIST researchers have observed for the first time the Hall effect in a gas of ultracold atoms.

Pages