RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Physics Frontier Center News

If you holler at someone across your yard, the sound travels on the bustling movement of air molecules. But over long distances your voice needs help to reach its destination—help provided by a telephone or the Internet. Atoms don’t yell, but they can share information through light. And they also need help connecting over long distances.

Now, researchers at the Joint Quantum Institute (JQI) have shown that nanofibers can provide a link between far-flung atoms, serving as a light...

Sylvain Ravets has recently been awarded the DIM Nano-K prize for his thesis “Development of tools for quantum engineering using individual atoms: optical nanofibers and controlled Rydberg interactions.” Awarded annually by C’Nano IdF (a French organization promoting...

From NIST-PML--JQI scientists have achieved a major milestone in simulating the dynamics of condensed-matter systems – such as the behavior of charged particles in semiconductors and other materials – through manipulation of carefully controlled quantum-mechanical models.

Going beyond their pioneering experiments in 2009 (the creation of “...

The quantum Hall effect, discovered in the early 1980s, is a phenomenon that was observed in a two-dimensional gas of electrons existing at the interface between two semiconductor layers. Subject to the severe criteria of very high material purity and very low temperatures, the electrons, when under the influence of a large magnetic field, will organize themselves into an ensemble state...

From NIST TechBeat--It’s not lightsaber time, not yet. But a team including theoretical physicists from JQI and NIST has taken another step toward building objects out of photons, and the findings, recently published in Physical Review Letters, hint that weightless particles of light can be joined into a sort of “molecule” with its own peculiar force. Researchers show...

Experimental quantum physics often resides in the coldest regimes found in the universe, where the lack of large thermal disturbances allows quantum effects to flourish. A key ingredient to these experiments is being able to measure just how cold the system of interest is. Laboratories that produce ultracold gas clouds have a simple and reliable method to do this: take pictures! The...

In quantum mechanics, symmetry describes more than just the patterns that matter takes — it is used to classify the nature of quantum states. These states can be entangled, exhibiting peculiar connections that cannot be explained without the use of quantum physics. For some entangled states, the symmetry of these connections can offer a kind of protection against disruptions. Physicists are...

JQI Fellow and NIST Scientist Gretchen Campbell has recently been announced as the IUPAP 2015 Young Scientist Prize recipient in the field of Atomic, Molecular, and Optical Physics. The organization cited her "outstanding contributions in toroidal Bose-Einstein condensates and its application to "atomtronic" circuits." 

The International...

A big part of the burgeoning science of quantum computation is reliably storing and processing information in the form of quantum bits, or qubits.  One of the obstacles to this goal is the difficulty of preserving the fragile quantum condition of qubits against unwanted outside influence even as the qubits interact among themselves in a programmatic way. 

Spin qubits are one of the most...

Optical fibers are hair-like threads of glass used to guide light. Fibers of exceptional purity have proved an excellent way of sending information over long distances and are the foundation of modern telecommunication systems. JQI researchers in collaboration with scientists from the Naval Research Laboratory have developed a new technique for visualizing light propagation through an optical...

If you’re designing a new computer, you want it to solve problems as fast as possible. Just how fast is possible is an open question when it comes to quantum computers, but JQI physicists have narrowed the theoretical limits for where that “speed limit” is. The work implies that quantum processors will work more slowly than some research has suggested. 
The work offers a better...

Pages