RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Activity 2

Many-Body Physics with Photons

(MA2) In this Major Activity, we address the fundamental challenges of preparation, control, and measurement of many-body physics in a new system: interacting photons. At present, quantum optics is pushing towards systems with strong interactions at the individual photon level. Indeed, several such systems are just starting to appear in the laboratory. Photon-photon coupling, mediated by an atomic or solid-state medium, is inherently long-range and can be exploited to study novel many-body collective effects and entanglement phenomena. The platforms in this MA feature tunability in both the strength and range of many-body interactions. These features will enable the exploration of the frontiers of collective many-body quantum phenomena in ways that are impossible in traditional, solid state-based systems where the interactions and spin are fixed for a specific material.

We will develop new approaches for designer photonic materials using coupled cavity arrays and photonic crystal techniques, as well as Rydberg-EIT systems. We will also investigate atom-atom interactions mediated by photons using our developed expertise in trapping cold atoms near ultra-thin tapered nanofibers.

Related Articles

  • February 26, 2016

When it comes to quantum physics, light and matter are not so different. Under certain circumstances, negatively charged electrons can fall into a coordinated dance that allows them to carry a current through a material laced with imperfections. That motion, which can only occur if electrons are confined to a two-dimensional plane, arises due to a phenomenon known as the quantum Hall effect....

  • February 8, 2016

Today’s networks use electronic circuits to store information and optical fibers to carry it, and quantum networks may benefit from a similar framework. Such networks would transmit qubits – quantum versions of ordinary bits – from place to place and would offer unbreakable security for the transmitted information. But researchers must first develop ways for qubits that are better at storing...

  • September 9, 2015

From NIST TechBeat--It’s not lightsaber time, not yet. But a team including theoretical physicists from JQI and NIST has taken another step toward building objects out of photons, and the findings, recently published in Physical Review Letters, hint that weightless particles of light can be joined into a sort of “molecule” with its own peculiar force. Researchers show...

  • August 21, 2014

JQI researchers led by Mohammad Hafezi report detailed measurements of the transmission (how much energy is lost) and delay for edge-state light and for bulk-route light on a photonic chip.

  • October 20, 2013

In this week’s issue of Nature Photonics scientists at the Joint Quantum Institute (*) report the first observation of topological effects for light in two dimensions, analogous to the quantum Hall effect for electrons. To accomplish this, they built a structure to guide infrared light over the surface of a room temperature, silicon-on-insulator chip.

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu