RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

JQI Podcast Episode 12

HAWC and the high-energy gamma rays

A view of the HAWC observatory in Mexico. (Credit: J. Goodman)

In our own galaxy and beyond, violent collisions fling a never-ending stream of stuff at the earth, and astrophysicists are eager to learn more about the processes that produce this cosmic barrage.

Researchers from around the world have teamed up to build the High-Altitude Water Cherenkov (HAWC) gammy-ray observatory, an array of hundreds of huge water tanks on a mountain in Mexico. HAWC helps astrophysicists spot active cosmic neighborhoods by capturing the shower of particles created when high-energy packets of light smash into the earth’s atmosphere.

Jordan Goodman, HAWC’s lead investigator, and Dan Fiorino, a postdoctoral researcher at UMD, tell Chris Cesare about the details of the HAWC experiment and how it promises to fill some gaps in our understanding of the universe. To learn more about HAWC, please visit www.hawc-observatory.org. The collaboration is preparing to publish the first results of its search, and you can read about the details in an upcoming source catalog or a paper about high-energy gamma rays from the Crab Nebula.

This episode of Relatively Certain was produced by Chris Cesare, Sean Kelley and Emily Edwards and edited by Chris Cesare and Kate Delossantos, featuring music by Dave Depper, Podington Bear, Kevin MacLeod and Chris Zabriskie. Relatively Certain is a production of the Joint Quantum Institute and the University of Maryland, and you can find it on iTunes, Google Play or Soundcloud.

Recent Podcast Episodes

Deep within the ice covering the South Pole, thousands of sensitive cameras strain their digital eyes in search of a faint blue glow—light that betrays the presence of high-energy neutrinos.

Trey Porto, a NIST physicist and Fellow of the Joint Quantum Institute, spends his days using atoms and lasers to study quantum physics. But even outside

A little more than a hundred years ago, Albert Einstein worked out a consequence of his new theory of gravity: Much like waves traveling through water, ripples can undulate through space and time, distorting the fabric of the universe itself.