RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Spin Hall Effect in a Quantum Gas

An 'atomtronic' transistor

Artistic depiction of atoms in a Bose-Einstein Condensate (BEC) experiencing the spin-Hall effect. When the atoms, which all have the same magnetic spin orientation (represented by their blue and yellow "poles"), are pushed toward the viewer, they drift to the right when they are "spin-up" ("spin-down") . This can be thought of as an atom version of a transistor (symbol for transistor in illustration), which is controlled by a laser field. (Credit and permissions: E. Edwards/JQI)

From NIST Techbeat1

JQI Researchers at the National Institute of Standards and Technology (NIST) have reported* the first observation of the "spin Hall effect" in a Bose-Einstein condensate (BEC), a cloud of ultracold atoms acting as a single quantum object. As one consequence, they made the atoms, which spin like a child's top, skew to one side or the other, by an amount dependent on the spin direction. Besides offering new insight into the quantum mechanical world, they say the phenomenon is a step toward applications in "atomtronics"—the use of ultracold atoms as circuit components.

A quantum circuit might use spins, described as "up" or "down," as signals, in a way analogous to how electric charge can represent ones and zeros in conventional computers. Quantum devices, however, can process information in ways that are difficult or impossible for conventional devices. Finding ways to manipulate spin is a major research effort among quantum scientists, and the team's results may help the spin Hall effect become a good tool for the job.The spin Hall effect is seen in electrons and other quantum particles when their motion depends on their magnetic orientation, or "spin." Previously, the spin Hall effect has been observed in electrons confined to a two-dimensional semiconductor strip, and in photons, but never before in a BEC.

The team used several sets of lasers to trap rubidium atoms in a tiny cloud, about 10 micrometers on a side, inside a vacuum chamber and then cool the atoms to a few billionths of a degree above absolute zero. Under these conditions, the atoms change from an ordinary gas to an exotic state of matter called a BEC, in which the atoms all behave identically and occupy the lowest energy state of the system. Then, the NIST team employed another laser to gently push the BEC, allowing them to observe the spin Hall effect at work. 

Spin is roughly analogous to the rotation of a top, and if the top is gently pushed straight forward, it will eventually tend to curve either to the right or left, depending on which way it is spinning. Similarly, subject to the spin Hall effect, a quantum object spinning one way will, when pushed, curve off to one side, while if it spins the other way, it will curve to the other. The BEC followed this sort of curved path after the laser pushed it. 

"This effect has been observed in solids before, but in solids there are other things happening that make it difficult to distinguish what the spin Hall effect is doing," says lead author Matthew Beeler, who just completed a postdoctoral fellowship at NIST. "The good thing about seeing it in the BEC is that we've got a simple system whose properties we can explain in just two lines of equations. It means we can disentangle the spin Hall effect from the background and explore it more easily." 

Conceptually, the laser/BEC setup can be thought of as an atom spin transistor—an atomtronic device—that can manipulate spin "currents" just as a conventional electronic transistor manipulates electrical current. (see Illustration)

Beeler says that it is unlikely to be a practical way to build a logic gate for a working quantum computer, though. For now, he says, their new window into the spin Hall effect is good for researchers, who have wanted an easier way to understand complex systems where the effect appears. It also might provide insight into how data can be represented and moved from place to place in atomtronic circuits.

1This story was written by Chad Boutin for NIST Techbeat. It was modified for JQI by E. Edwards, with permission.

Media Contact
Chad Boutin
| |
(301) 975-4261

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu