RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Research News

November 14, 2016 | PFC | Research News

Atomic beltway could solve problems of cosmic gravity

When is a traffic jam not a traffic jam? When it's a quantum traffic jam, of course. Only in quantum physics can traffic be standing still and moving at the same time.

October 28, 2016 | People News | Research News

Artificial atoms shed light on the future of security

From credit card numbers to bank account information, we transmit sensitive digital information over the internet every day. Since the 1990s, though, researchers have known that quantum computers threaten to disrupt the security of these transactions.

That’s because quantum physics predicts that these computers could do some calculations far faster than their conventional counterparts. This would let a quantum computer crack a common internet security system called public key cryptography.

October 20, 2016 | Research News

Move over, lasers: Scientists can now create holograms using neutrons

For the first time, a team including scientists from the National Institute of Standards and Technology (NIST) and JQI have used neutron beams to create holograms of large solid objects, revealing their interior details in ways that ordinary holograms do not.

October 14, 2016 | PFC | Research News

A closer look at Weyl physics

This is part two of a two-part series on Weyl semimetals and Weyl fermions, newly discovered materials and particles that have drawn great interest from physicists at JQI and the Condensed Matter Theory Center at the University of Maryland. The second part focuses on the theoretical questions about Weyl materials that Maryland researchers are exploring. Part one, which was published last week, introduced their history and basic physics.

October 6, 2016 | PFC | Research News

A warm welcome for Weyl physics

This is part one of a two-part series on Weyl semimetals and Weyl fermions, newly discovered materials and particles that have drawn great interest from researchers at JQI and the Condensed Matter Theory Center at the University of Maryland. The first part focuses on the history and basic physics of these materials. Part two focuses on theoretical work at Maryland.

October 4, 2016 | People News | Research News

Physics Nobel honors underpinnings of exotic matter

A trio of researchers who laid the foundation for understanding numerous exotic phases of matter have split the 2016 Nobel Prize in Physics.

The Royal Swedish Academy of Sciences awarded the prize "for theoretical discoveries of topological phase transitions and topological phases of matter" to three laureates: David Thouless of the University of Washington, Duncan Haldane of Princeton University and Michael Kosterlitz of Brown University.

August 3, 2016 | PFC | Research News

Programmable ions set the stage for general-purpose quantum computers

Quantum computers promise speedy solutions to some difficult problems, but building large-scale, general-purpose quantum devices is a problem fraught with technical challenges.

To date, many research groups have created small but functional quantum computers. By combining a handful of atoms, electrons or superconducting junctions, researchers now regularly demonstrate quantum effects and run simple quantum algorithms—small programs dedicated to solving particular problems.

June 24, 2016 | PFC | Research News

Ultra-cold atoms may wade through quantum friction

Theoretical physicists studying the behavior of ultra-cold atoms have discovered a new source of friction, dispensing with a century-old paradox in the process. Their prediction, which experimenters may soon try to verify, was reported recently in Physical Review Letters.

June 6, 2016 | PFC | Research News

Disorder grants a memory to quantum spins

Nature doesn’t have the best memory. If you fill a box with air and divide it in half with a barrier, it’s easy to tell molecules on the left from molecules on the right. But after removing the barrier and waiting a short while, the molecules get mixed together, and it becomes impossible to tell where a given molecule started. The air-in-a-box system loses any memory of its initial conditions.

May 23, 2016 | PFC | Research News

Quantum cycles power cold-atom pump

The idea of a pump is at least as old as the ancient Greek philosopher and scientist Archimedes. More than 2000 years ago, Archimedes allegedly invented a corkscrew pump that could lift water up an incline with the turn of a handle. Versions of the ancient invention still bear his name and are used today in agriculture and industry.

May 10, 2016 | Research News

Novel gate may enhance power of Majorana-based quantum computers

Quantum computers hold great potential, but they remain hard to build because their basic components—individual quantum systems like atoms, electrons or photons—are fragile. A relentless and noisy background constantly bombards the computer’s data.
 

Pages

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu