RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Research News

Quantum point contact
September 18, 2014 | Research News

Two-dimensional electron liquids

A relatively new frontier for studying 2D matter is provided by planar collections of electrons at the surface of transition-metal-oxide (TMO) materials, in which high electron densities give rise to interactions that are stronger than in semiconductors. Before he left Stanford University, new JQI Fellow and UMD Professor James Williams and his colleagues performed tests on a thin sample of strontium titanate (STO) covered over with an electrolyte gel, a material in which negative and positive ions dissociate (saltwater is a common electrolyte: Na+ and Cl- ions come apart in a water solution). Their results appear in the journal Nature Physics.

September 2, 2014 | Research News

Cool Calculations for Cold Atoms

Two scientists at the Joint Quantum Institute have formulated a universal theory to describe the properties of Efimov states, a theory that, for the first time, does not need extra adjustable unknown parameters . This should allow physicists to predict the rates of chemical processes involving three atoms -- or even more -- using only a knowledge of the interaction forces at work.

August 28, 2014 | Research News

Sprinkling Spin Physics onto a Superconductor

JQI Fellow Jay Sau, in collaboration with physicists from Harvard and Yale, has been studying the effects of embedding magnetic spins onto the surface of a superconductor. They recently report that the spins can interact differently than previously thought. This hybrid platform could be useful for quantum simulations of complex spin systems, having the special feature that the interactions may be controllable, something quite unusual for most condensed matter systems.

August 21, 2014 | Research News

On-chip Topological Light

JQI researchers led by Mohammad Hafezi report detailed measurements of the transmission (how much energy is lost) and delay for edge-state light and for bulk-route light on a photonic chip.

July 31, 2014 | PFC | Research News

Spin Diagnostics

Recently physicists led JQI Fellow Christopher Monroe have executed an MRI-like diagnostic on a crystal of interacting quantum spins. They predict that their method is scalable and may be useful for validating experiments with much larger ensembles of interacting spins.

July 17, 2014 | Research News

Highly-Charged Ions

A new theoretical study conducted by JQI adjunct fellow Marianna Safronova and her colleagues from groups around the world provides the best yet study of how highly charged ions could be used for atomic timekeeping and for processing quantum information.

July 9, 2014 | PFC | Research News

Making Quantum Connections

In quantum mechanics, interactions between particles can give rise to entanglement, which is a strange type of connection that could never be described by a non-quantum, classical theory. These connections, called quantum correlations, are present in entangled systems even if the objects are not physically linked (with wires, for example). Entanglement is at the heart of what distinguishes purely quantum systems from classical ones; it is why they are potentially useful, but it sometimes makes them very difficult to understand.

July 2, 2014 | Research News

Superconducting-Silicon Qubits

Theorists propose a way to make superconducting quantum devices such as Josephson junctions and qubits, atom-by-atom, inside a silicon crystal.

May 27, 2014 | Research News

Advanced Light

Michael Lewis’s bestselling book Flash Boys describes how some brokers, engaging in high frequency trading, exploit fast telecommunications to gain fraction-of-a-second advantage in the buying and selling of stocks. But you don’t need to have billions of dollars riding on this-second securities transactions to appreciate the importance of fast signal processing. From internet to video streaming, we want things fast.

May 5, 2014 | Research News

Stimulated Mutual Annihilation

JQI physicists report detailed calculations of the dynamics of a positronium BEC. This work is the first to account for effects of collisions between different positronium species. These collisions put important constraints on gamma-ray laser operation.

March 19, 2014 | Research News

Cold Chaos

At sub-micro-kelvin temperatures atoms or molecules move so slowly that it is better to think of them as spread-out, wavelike things a micron or more across, many times larger than any putative bond length (typically sub-nanometer in size) that would characterize bound molecules. A new experiment conducted at the University of Innsbruck in Austria adds a new twist to this picture.

Pages

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu