RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Physics at the edge of the world

A view of Amundsen-Scott Station at the South Pole. (Credit: Dwight Bohnet/NSF)

Deep within the ice covering the South Pole, thousands of sensitive cameras strain their digital eyes in search of a faint blue glow—light that betrays the presence of high-energy neutrinos.

For this episode, Chris sat down with UMD graduate student Liz Friedman and physics professor Kara Hoffman to learn more about IceCube, the massive underground neutrino observatory located in one of the most desolate spots on Earth. It turns out that IceCube is blind to the highest-energy neutrinos, and Friedman is heading down to the South Pole to help install stations for a new observatory—the Askaryan Radio Array—which uses radio waves instead of blue light to tune into the whispers of these ghostly visitors.

This episode of Relatively Certain was produced by Chris Cesare and Emily Edwards. It features music by Dave Depper and Podington Bear. Relatively Certain is a production of the Joint Quantum Institute, a research partnership between the University of Maryland and the National Institute of Standards and Technology, and you can find it on iTunesGoogle Play or Soundcloud.

Recent Podcast Episodes

Trey Porto, a NIST physicist and Fellow of the Joint Quantum Institute, spends his days using atoms and lasers to study quantum physics. But even outside

A little more than a hundred years ago, Albert Einstein worked out a consequence of his new theory of gravity: Much like waves traveling through water, ripples can undulate through space and time, distorting the fabric of the universe itself. 

More than 300 feet underground, looping underneath both France and Switzerland on the outskirts of Geneva, a 16-mile-long ring called the Large Hadron Collider (LHC) smashes protons together at nearly the speed of light. Sifting through the wreckage, scientists have made some profound discoveries about the fundamental nature of our universe.

But what if all that chaos underground is shrouding subtle hints of new physics? David Curtin, a postdoctoral researcher at the Maryland Center for Fundamental Physics here at UMD, has an idea for a detector that could be built at the surface—far away from the noise and shrapnel of the main LHC experiments. The project, which he and his collaborators call MATHUSLA, may resolve some of the mysteries that are lingering behind our best theories.

This episode of Relatively Certain was produced by Chris Cesare, Emily Edwards, Sean Kelley and Kate Delossantos. It features music by Dave Depper, Podington Bear, Broke for Free, Chris Zabriskie and the LHCsound project. Relatively Certain is a production of the Joint Quantum Institute, a research partnership between the University of Maryland and the National Institute of Standards and Technology, and you can find it on iTunes, Google Play or Soundcloud.