RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Physics Frontier Center News

March 19, 2015 | PFC | Research News

Sharper Nanoscopy

A new study from Edo Waks' group has shown how to sharpen nanoscale microscopy (nanoscopy) even more by better locating the exact position of the light source. The improvement involves taking into account the phantom dipole induced in the surface of a nanowire by the presence of a nearby quantum dot. The interference of light emitted by the dot with light emitted (in effect) by the phantom distorts the estimation of the dot's true location.

March 19, 2015 | PFC | People News

Paul Julienne awarded William F. Meggers Award

The OSA announced JQI Fellow and NIST scientist Paul Julienne as the 2015 William F. Meggers Award recipient. The William F. Meggers Award recognizes outstanding work in spectroscopy. According to the citation, Julienne is being recognized for "seminal contributions to precision photoassociation and magnetic-Feshbach spectroscopy of ultracold atoms, and the application of these techniques to the formation of cold polar molecules." 

February 26, 2015 | PFC | Research News

Modular Entanglement Using Atomic Ion Qubits

JQI researchers, under the direction of Christopher Monroe have demonstrated modular entanglement between two atomic systems, separated by one meter. Here, photons are the long distance information carriers entangling multiple qubit modules.

February 5, 2015 | PFC | People News

Vladimir Manucharyan Receives CAREER Award

JQI Fellow and Assistant Professor of physics Vladimir Manucharyan has received a National Science Foundation CAREER Award. His proposal, entitled “Realizing the ultrastrong coupling regime of quantum electrodynamics using high-impedance Josephson superconducting circuits,” will receive five years of funding. NSF funds research in science and engineering through grants, contracts and cooperative agreements.

For more information on NSF Awards visit: http://www.nsf.gov/about/

November 14, 2014 | PFC | Research News

Best Quantum Receiver

Alan Migdall and Elohim Becerra and their colleagues at the Joint Quantum Institute have devised an optical detection scheme with an error rate 25 times lower than the fundamental limit of the best conventional detector. They did this by employing not passive detection of incoming light pulses. Instead the light is split up and measured numerous times.

boson spin-hall thumb
October 20, 2014 | PFC | Research News

Restoring Order

Every electrical device is enabled by the movement of charge, or current. ‘Spintronics’ taps into a different electronic attribute, an intrinsic quantum property known as spin, and may yield devices that operate on the basis of spin-transport. JQI/CMTC theorists have been developing a model for what happens when spins are trapped in an optical lattice structure with a “double-valley” feature. This new result opens up a novel path for generating what’s known as the spin Hall effect, an important example of spin-transport.

Interfering Waves
October 10, 2014 | PFC | Research News

Getting sharp images from dull detectors

A new extreme for sub-wavelength interference has been achieved by JQI scientists using thermal light and small-photon-number light detection. Achieving this kind of sharp interference pattern could be valuable for performing a variety of high-precision physics and astronomy measurements.

October 8, 2014 | PFC | Research News

A cold-atom ammeter

JQI scientists have added an important technique to the atomtronics arsenal, a method for analyzing a superfluid circuit component called a ‘weak link’. The result, detailed in the online journal Physical Review X, is the first direct measurement of the current-phase relationship of a weak link in a cold atom system.

August 21, 2014 | PFC | Research News

On-chip Topological Light

JQI researchers led by Mohammad Hafezi report detailed measurements of the transmission (how much energy is lost) and delay for edge-state light and for bulk-route light on a photonic chip.

Pages