RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Physics Frontier Center News

Interfering Waves
October 10, 2014 | PFC | Research News

Getting sharp images from dull detectors

A new extreme for sub-wavelength interference has been achieved by JQI scientists using thermal light and small-photon-number light detection. Achieving this kind of sharp interference pattern could be valuable for performing a variety of high-precision physics and astronomy measurements.

October 8, 2014 | PFC | Research News

A cold-atom ammeter

JQI scientists have added an important technique to the atomtronics arsenal, a method for analyzing a superfluid circuit component called a ‘weak link’. The result, detailed in the online journal Physical Review X, is the first direct measurement of the current-phase relationship of a weak link in a cold atom system.

August 21, 2014 | PFC | Research News

On-chip Topological Light

JQI researchers led by Mohammad Hafezi report detailed measurements of the transmission (how much energy is lost) and delay for edge-state light and for bulk-route light on a photonic chip.

July 31, 2014 | PFC | Research News

Spin Diagnostics

Recently physicists led JQI Fellow Christopher Monroe have executed an MRI-like diagnostic on a crystal of interacting quantum spins. They predict that their method is scalable and may be useful for validating experiments with much larger ensembles of interacting spins.

July 9, 2014 | PFC | Research News

Making Quantum Connections

In quantum mechanics, interactions between particles can give rise to entanglement, which is a strange type of connection that could never be described by a non-quantum, classical theory. These connections, called quantum correlations, are present in entangled systems even if the objects are not physically linked (with wires, for example). Entanglement is at the heart of what distinguishes purely quantum systems from classical ones; it is why they are potentially useful, but it sometimes makes them very difficult to understand.

May 27, 2014 | PFC | Research News

Advanced Light

Michael Lewis’s bestselling book Flash Boys describes how some brokers, engaging in high frequency trading, exploit fast telecommunications to gain fraction-of-a-second advantage in the buying and selling of stocks. But you don’t need to have billions of dollars riding on this-second securities transactions to appreciate the importance of fast signal processing. From internet to video streaming, we want things fast.

May 14, 2014 | PFC | People News

JQI papers featured as New Journal of Physics "Highlights of 2013"

Papers from the groups of Ian Spielman and Jake Taylor were recently chosen as "Highlights of 2013" by the New Journal of Physics. The articles are listed below To see more highlights, visit http://iopscience.iop.org/1367-2630/page/highlights-of-2013

March 25, 2014 | PFC | People News

JQI undergraduate researcher Geoffrey Ji receives Goldwater Scholarship

From CMNS at UMD

Three University of Maryland students have been awarded scholarships by the Barry M. Goldwater Scholarship and Excellence in Education Foundation, which encourages students to pursue advanced study and careers in the sciences, engineering and mathematics. A fourth student received honorable mention.

February 25, 2014 | PFC | Research News

How do you build a large-scale quantum computer?

Physicists led by ion-trapper Christopher Monroe at the JQI have proposed a modular quantum computer architecture that promises scalability to much larger numbers of qubits. The components of this architecture have individually been tested and are available, making it a promising approach. In the paper, the authors present expected performance and scaling calculations, demonstrating that their architecture is not only viable, but in some ways, preferable when compared to related schemes.

February 12, 2014 | PFC | Research News

Stirring-up atomtronics in a quantum circuit

Atomtronics is an emerging technology whereby physicists use ensembles of atoms to build analogs to electronic circuit elements. Modern electronics relies on utilizing the charge properties of the electron. Using lasers and magnetic fields, atomic systems can be engineered to have behavior analogous to that of electrons, making them an exciting platform for studying and generating alternatives to charge-based electronics.

Pages

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu