RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Physics Frontier Center News

February 26, 2016 | PFC | Research News

Characterizing quantum Hall light zooming around a photonic chip

When it comes to quantum physics, light and matter are not so different. Under certain circumstances, negatively charged electrons can fall into a coordinated dance that allows them to carry a current through a material laced with imperfections. That motion, which can only occur if electrons are confined to a two-dimensional plane, arises due to a phenomenon known as the quantum Hall effect.

February 23, 2016 | PFC | People News

Jay Deep Sau Receives Sloan Research Fellowship

Jay Deep Sau, an assistant professor of physics at the University of Maryland and fellow of the Joint Quantum Institute, was awarded a Sloan Research Fellowship for 2016. This award, granted by the Alfred P. Sloan Foundation, identifies 126 early-career scientists based on their potential to contribute fundamentally significant research to a wider academic community.

February 8, 2016 | PFC | Research News

Nanoscale cavity strongly links quantum particles

Scientists have created a crystal structure that boosts the interaction between tiny bursts of light and individual electrons, an advance that could be a significant step toward establishing quantum networks in the future.

January 6, 2016 | PFC | Research News

Beating the heat

Harnessing quantum systems for information processing will require controlling large numbers of basic building blocks called qubits. The qubits must be isolated, and in most cases cooled such that, among other things, errors in qubit operations do not overwhelm the system, rendering it useless. Led by JQI Fellow Christopher Monroe, physicists have recently demonstrated important steps towards implementing a proposed type of gate, which does not rely on super-cooling their ion qubits.

December 17, 2015 | PFC | Research News

Controlling the Thermodynamics of Light

The concept of temperature is critical in describing many physical phenomena, such as the transition from one phase of matter to another.  Turn the temperature knob and interesting things can happen.  But other knobs might be just as important for studying some phenomena.  One such knob is chemical potential, a thermodynamic parameter first introduced in the nineteenth century by scientists for keeping track of potential energy absorbed or emitted by a system during chemical reactions.

December 3, 2015 | PFC | Research News

Shaking Bosons into Fermions

Particles can be classified as bosons or fermions. A defining characteristic of a boson is its ability to pile into a single quantum state with other bosons. Fermions are not allowed to do this. One broad impact of fermionic anti-social behavior is that it allows for carbon-based life forms, like us, to exist. If the universe were solely made from bosons, life would certainly not look like it does. Recently, JQI theorists* have proposed an elegant method for achieving transmutation--that is, making bosons act like fermions.

November 25, 2015 | PFC | Research News

Quantum Insulation

Two physical phenomena, localization and ergodicity-breaking, are conjoined in new experimental and theoretical work.  Before we consider possible implications for fundamental physics and for prospective quantum computing, let’s first look at these two topics in turn.  It will bear providing some specific examples before getting to the quantum details.

 LOCALIZATION

October 30, 2015 | PFC | People News

Sylvain Ravets awarded DIM Nano-K thesis prize

Sylvain Ravets has recently been awarded the DIM Nano-K prize for his thesis “Development of tools for quantum engineering using individual atoms: optical nanofibers and controlled Rydberg interactions.” Awarded annually by C’Nano IdF (a French organization promoting nanoscience research), the prize recognizes him for “research at the interface between nanosciences and cold atoms.” The DIM Nano-K gathers IFRAF (Île-de-France Cold Atom Research Institute) and C’Nano IdF (centre of

September 29, 2015 | PFC | Research News

At the edge of a quantum gas

From NIST-PML--JQI scientists have achieved a major milestone in simulating the dynamics of condensed-matter systems – such as the behavior of charged particles in semiconductors and other materials – through manipulation of carefully controlled quantum-mechanical models.

September 17, 2015 | PFC | Research News

Beyond Majorana: Ultracold gases as a platform for observing exotic robust quantum states

The quantum Hall effect, discovered in the early 1980s, is a phenomenon that was observed in a two-dimensional gas of electrons existing at the interface between two semiconductor layers. Subject to the severe criteria of very high material purity and very low temperatures, the electrons, when under the influence of a large magnetic field, will organize themselves into an ensemble state featuring remarkable properties.

Pages