RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Physics Frontier Center News

May 23, 2016 | PFC | Research News

Quantum cycles power cold-atom pump

The idea of a pump is at least as old as the ancient Greek philosopher and scientist Archimedes. More than 2000 years ago, Archimedes allegedly invented a corkscrew pump that could lift water up an incline with the turn of a handle. Versions of the ancient invention still bear his name and are used today in agriculture and industry.

March 30, 2016 | PFC | Research News

Measuring the magnetization of wandering spins

The swirling field of a magnet—rendered visible by a sprinkling of iron filings—emerges from the microscopic behavior of atoms and their electrons. In permanent magnets, neighboring atoms align and lock into place to create inseparable north and south poles. For other materials, magnetism can be induced by a field strong enough to coax atoms into alignment.

March 16, 2016 | PFC | Research News

Rogue rubidium leads to atomic anomaly

The behavior of a few rubidium atoms in a cloud of 40,000 hardly seems important. But a handful of the tiny particles with the wrong energy may cause a cascade of effects that could impact future quantum computers.

Some proposals for quantum devices use Rydberg atoms—atoms with highly excited electrons that roam far from the nucleus—because they interact strongly with each other and offer easy handles for controlling their individual and collective behavior. Rubidium is one of the most popular elements for experimenting with Rydberg physics.

February 26, 2016 | PFC | Research News

Characterizing quantum Hall light zooming around a photonic chip

When it comes to quantum physics, light and matter are not so different. Under certain circumstances, negatively charged electrons can fall into a coordinated dance that allows them to carry a current through a material laced with imperfections. That motion, which can only occur if electrons are confined to a two-dimensional plane, arises due to a phenomenon known as the quantum Hall effect.

February 23, 2016 | PFC | People News

Jay Deep Sau Receives Sloan Research Fellowship

Jay Deep Sau, an assistant professor of physics at the University of Maryland and fellow of the Joint Quantum Institute, was awarded a Sloan Research Fellowship for 2016. This award, granted by the Alfred P. Sloan Foundation, identifies 126 early-career scientists based on their potential to contribute fundamentally significant research to a wider academic community.

February 8, 2016 | PFC | Research News

Nanoscale cavity strongly links quantum particles

Scientists have created a crystal structure that boosts the interaction between tiny bursts of light and individual electrons, an advance that could be a significant step toward establishing quantum networks in the future.

January 6, 2016 | PFC | Research News

Beating the heat

Harnessing quantum systems for information processing will require controlling large numbers of basic building blocks called qubits. The qubits must be isolated, and in most cases cooled such that, among other things, errors in qubit operations do not overwhelm the system, rendering it useless. Led by JQI Fellow Christopher Monroe, physicists have recently demonstrated important steps towards implementing a proposed type of gate, which does not rely on super-cooling their ion qubits.

December 17, 2015 | PFC | Research News

Controlling the Thermodynamics of Light

The concept of temperature is critical in describing many physical phenomena, such as the transition from one phase of matter to another.  Turn the temperature knob and interesting things can happen.  But other knobs might be just as important for studying some phenomena.  One such knob is chemical potential, a thermodynamic parameter first introduced in the nineteenth century by scientists for keeping track of potential energy absorbed or emitted by a system during chemical reactions.

December 3, 2015 | PFC | Research News

Shaking Bosons into Fermions

Particles can be classified as bosons or fermions. A defining characteristic of a boson is its ability to pile into a single quantum state with other bosons. Fermions are not allowed to do this. One broad impact of fermionic anti-social behavior is that it allows for carbon-based life forms, like us, to exist. If the universe were solely made from bosons, life would certainly not look like it does. Recently, JQI theorists* have proposed an elegant method for achieving transmutation--that is, making bosons act like fermions.

November 25, 2015 | PFC | Research News

Quantum Insulation

Two physical phenomena, localization and ergodicity-breaking, are conjoined in new experimental and theoretical work.  Before we consider possible implications for fundamental physics and for prospective quantum computing, let’s first look at these two topics in turn.  It will bear providing some specific examples before getting to the quantum details.

 LOCALIZATION

Pages