RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

News

August 21, 2015 | PFC | Research News

Thermometry using an optical nanofiber

Experimental quantum physics often resides in the coldest regimes found in the universe, where the lack of large thermal disturbances allows quantum effects to flourish. A key ingredient to these experiments is being able to measure just how cold the system of interest is. Laboratories that produce ultracold gas clouds have a simple and reliable method to do this: take pictures! The temperature of a gas depends on the range of velocities among the particles, namely the size of the difference between the slowest- and the fastest-moving particles.

August 11, 2015 | Research News

Using an electron to probe the tiny magnetic core of an atom

Precise information about the magnetic properties of nuclei is critical for studies of what’s known as the ‘weak force.’ While people do not feel this force in the same way they feel electricity or gravity, its effects are universal. The weak force allows stuff to become unglued and form new elements through decay—the sun, for example, is powered through deuterium ...

July 27, 2015 | PFC | Research News

Interacting Ion Qutrits

Symmetry permeates nature, from the radial symmetry of flowers to the left-right symmetry of the human body. As such, it provides a natural way of classifying objects by grouping those that share the same symmetry. This is particularly useful for describing transitions between phases of matter. For example, liquid and gas phases have translational symmetry, meaning the arrangement of ...

July 27, 2015 | Research News

Quantum speed up in an optical cavity

Control systems are ubiquitous, and as essential as they are easy to overlook. For instance, turning the dial on a thermostat feels as trivial as moving a piece on a board game, but this control system is actually quite complex. Electricity is used to continuously compress a gas outside the home, so that the air will cool as it re-expands until the molecules inside are moving as slow as ...

July 27, 2015 | PFC | People News

Gretchen Campbell receives IUPAP Young Scientist Prize

JQI Fellow and NIST Scientist Gretchen Campbell has recently been announced as the IUPAP 2015 Young Scientist Prize recipient in the field of Atomic, Molecular, and Optical Physics. The organization cited her "outstanding contributions in toroidal Bose-Einstein condensates and its application to "atomtronic" circuits." 

The International Union of Pure and Applied Physics (IUPAP) was established in 1922 in Brussels with 13 ...

July 22, 2015 | PFC | Research News

Qubit Chemistry

A big part of the burgeoning science of quantum computation is reliably storing and processing information in the form of quantum bits, or qubits.  One of the obstacles to this goal is the difficulty of preserving the fragile quantum condition of qubits against unwanted outside influence even as the qubits interact among themselves in a programmatic way. 

Spin qubits are ...

June 12, 2015 | PFC | Research News

Collecting Lost Light

Optical fibers are hair-like threads of glass used to guide light. Fibers of exceptional purity have proved an excellent way of sending information over long distances and are the foundation of modern telecommunication systems. Transmission relies on what’s called total internal reflection, wherein the light propagates by effectively bouncing back and forth off of the fiber’s internal surface. Though the ...

May 26, 2015 | Research News

Moving out of equilibrium

Physicists use theoretical and experimental techniques to develop explanations of the goings-on in nature. Somewhat surprisingly, many phenomena such as electrical conduction can be explained through relatively simplified mathematical pictures — models that were constructed well before the advent of modern computation. And then there are things in nature that push even the limits of high performance computing and sophisticated ...

May 26, 2015 | People News

JQI undergraduate honored for thesis work

Michael Kossin, an undergraduate who works with JQI Fellow Luis Orozco, has been awarded an IPST Monroe Martin Prize for Undergraduate Research in Physics for his paper, "Production of a Polarizing Millimeter-Wave Fabry-Perot Resonator.” He also earned Departmental High Honors. This summer Kossin will work with Professor Alejandro Garcia at the University of Washington, whose research involves weak interactions in the ...
May 13, 2015 | People News

Shuo Sun wins Maiman Outstanding Student Paper Competition

JQI graduate student Shuo Sun has won the Maiman Outstanding Student Paper Competition at CLEO, held annually in May. Sun's paper was titled "A solid-state spin-photon transistor." According to the website, "This competition was established in 2008 in memory of Theodore Maiman and in acknowledgement of his amazing invention, the first working laser, and his other outstanding contributions to optics and ...

May 12, 2015 | Research News

Magic Wavelengths

Rydberg atoms, atoms whose outermost electrons are highly excited but not ionized, might be just the thing for processing quantum information.  These outsized atoms can be sustained for a long time in a quantum superposition condition---a good thing for creating qubits---and they can interact strongly with other such atoms, making them useful for devising the kind of logic gates needed ...

Pages

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu