RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

News

November 17, 2017 | Research News

Chilled atoms enable deeper understanding of simple chemistry

The field of chemistry often conjures up images of boiling liquids and explosions. But underneath all that eye-catching action is an invisible quantum world where atoms and molecules are constantly rearranging, colliding, and combining to form different molecules.

November 8, 2017 | PFC | Research News

Ion qubits offer early glimpse of quantum error detection

Computers based on quantum physics promise to solve certain problems much faster than their conventional counterparts. By utilizing qubits—which can have more than just the two values of ordinary bits—quantum computers of the future could perform complex simulations and may solve difficult problems in chemistry, optimization and pattern-recognition.

But building a large quantum computer—one with thousands or millions of qubits—is ...

November 7, 2017 | People News

Congressional hearing highlights need for quantum technology initiative

On October 24, 2017, two Fellows of the Joint Quantum Institute and the Joint Center for Quantum Information and Computer Science were among those that testified during a joint congressional committee hearing on the topic of American Leadership in Quantum Technology.

Carl Williams and Christopher Monroe attended as expert panelists, reading prepared statements and answering questions ...

October 3, 2017 | Podcast

The Nobel Prize: A LIGO Q&A

A little more than a hundred years ago, Albert Einstein worked out a consequence of his new theory of gravity: Much like waves traveling through water, ripples can undulate through space and time, distorting the fabric of the universe itself. 

Today, Rainer Weiss, Barry C. Barish and Kip S. Thorne were awarded the 2017 Nobel Prize in Physics for ...

September 27, 2017 | PFC | Research News

Turning ions into quantum cats

In Schrödinger's famous thought experiment, a cat seems to be both dead and alive—an idea that strains credulity. These days, cats still don't act this way, but physicists now regularly create analogues of Schrödinger's cat in the lab by smearing the microscopic quantum world over longer and longer distances.


Such "cat states" have found many homes, promising more sensitive quantum ...

September 26, 2017 | PFC | Research News

Sensing atoms caught in ripples of light

Optical fibers are ubiquitous, carrying light wherever it is needed. These glass tunnels are the high-speed railway of information transit, moving data at incredible speeds over tremendous distances. Fibers are also thin and flexible, so they can be immersed in many different environments, including the human body, where they are employed for illumination and imaging.

Physicists use fibers, too, particularly ...

September 8, 2017 | Research News

UMD to host 200 scientists for quantum error correction conference

Nearly 200 researchers from around the world will descend on the University of Maryland campus next week for the 4th International Conference on Quantum Error Correction (QEC17), the world’s premier scientific meeting focused on protecting quantum computers from their hostile surroundings.

This year’s conference, which will be held Sept. 11–15, is organized by researchers from the Joint Center for Quantum Information ...

September 1, 2017 | PFC | Research News

Long-range interactions leave a quantum reminder

Given enough time, a forgotten cup of coffee will lose its appeal and cool to room temperature. One way of telling this tepid tale involves a stupendous number of coffee molecules colliding like billiard balls with themselves and colder molecules in the air above. Those constant collisions siphon energy away from the coffee, bit by bit, in a process that ...

August 2, 2017 | Research News

Simulating the quantum world with electron traps

This story was prepared by the Delft University of Technology (TU Delft) and adapted with permission. The experiments described were performed at TU Delft, with theoretical and numerical contributions from JQI Fellow and Condensed Matter Theory Center Director Sankar Das Sarma and JQI postdoctoral researcher Xiao Li.

Quantum behavior plays a crucial role in novel and emergent material properties, such ...

July 31, 2017 | Podcast

Long live MATHUSLA

More than 300 feet underground, looping underneath both France and Switzerland on the outskirts of Geneva, a 16-mile-long ring called the Large Hadron Collider (LHC) smashes protons together at nearly the speed of light. Sifting through the wreckage, scientists have made some profound discoveries about the fundamental nature of our universe.

But what if all that chaos underground is shrouding subtle hints of new physics? David Curtin, a postdoctoral researcher at the Maryland Center for Fundamental Physics here at UMD, has an idea for a detector that could be built at the surface—far away from the noise and shrapnel of the main LHC experiments. The project, which he and his collaborators call MATHUSLA, may resolve some of the mysteries that are lingering behind our best theories.

This episode of Relatively Certain was produced by Chris Cesare, Emily Edwards, Sean Kelley and Kate Delossantos. It features music by Dave Depper, Podington Bear, Broke for Free, Chris Zabriskie and the LHCsound project. Relatively Certain is a production of the Joint Quantum Institute, a research partnership between the University of Maryland and the National Institute of Standards and Technology, and you can find it on iTunes, Google Play or Soundcloud.

July 12, 2017 | PFC | Research News

Atomic cousins team up in early quantum networking node

Large-scale quantum computers, which are an active pursuit of many university labs and tech giants, remain years away. But that hasn’t stopped some scientists from thinking ahead, to a time when quantum computers might be linked together in a network or a single quantum computer might be split up across many interconnected nodes.

A group of physicists at the University ...

Pages