RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Conditional Mutual Information and Quantum Steering

August 3, 2017 - 2:00pm
Speaker: 
Eneet Kaur
Institution: 
Louisiana State University

Quantum steering has recently been formalized in the framework of a resource theory of steering, and several quantifiers have already been introduced. We propose the intrinsic steerability as an information-theoretic quantifier of steering that uses conditional mutual information to measure the deviation of a given assemblage from an assemblage having a local hidden-state model. We prove that this quantifier is a steering monotone (i.e., it is faithful, convex, and non-increasing under one-way local operations and classical communication). This suggests that the intrinsic steerability should find applications in protocols where steering is relevant. We then consider a restricted version of intrinsic steerability, which is a steering monotone under a restricted set of free operations. The restricted intrinsic steerability is additive with respect to tensor-product assemblages, and it is also monogamous.

CSS 3100A

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu