RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Topological Superconductivity and Majorana Zero Modes

April 7, 2017 - 1:00pm
Speaker: 
Setiawan
Dissertation Committee Chair: 
​​Prof. Sankar Das Sarma
 
Committee: 
Dr. Jay Deep Sau
Dr. Maissam Barkeshli
Dr. Theodore Einstein
Dr. Christopher Jarzynski
 
Abstract:
Recent years have seen a surge interest in realizing Majorana zero modes in condensed matter system. Majorana zero modes are zero-energy quasiparticle excitations which are their own anti-particles. The topologically degenerate Hilbert space and non-Abelian statistics associated with Majorana zero modes renders them useful for realizing topological quantum computation. These Majorana zero modes can be found at the boundary of a topological superconductor. While preliminary evidence for Majorana zero modes in form of zero-bias conductance peaks have already been observed, confirmatory signatures of Majorana zero modes are still lacking. 
 
In this thesis, we theoretically investigate several signatures of Majorana zero modes, thereby suggesting improvement and directions that can be pursued for an unambiguous identification of the Majorana zero modes. We begin by studying analytically the differential conductance of the normal-metal--topological superconductor junction across the topological transition within the Blonder-Tinkham-Klapwijk formalism. We show that despite being quantized in the topological regime, the zero-bias conductance only develops as a peak in the conductance spectra for sufficiently small junction transparencies, or for small and large spin-orbit coupling strength. We proceed to investigate the signatures of the Majorana zero modes in superconductor--normal-metal--superconductor junctions and show that the conductance quantization in this junction is.not robust against increasing junction transparency. Finally, we propose a dynamical scheme to study the short-lived topological phases in ultracold systems by first preparing the systems in its long-lived non-topological phases and then driving it into the topological phases and back. We find that the excitations' momentum distributions exhibit Stuckelberg oscillations and Kibble-Zurek scaling characteristic of the topological quantum phase transition, thus provides a bulk probe for the topological phase.
PHY 2205 John S. Toll Physics Building

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu