RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Macroscopic Physics, the Higgs Boson, and Cosmological Evolution of Fundamental Parameters

December 6, 2016 -
4:00pm to 5:00pm
Speaker: 
David Kaplan
Institution: 
The Johns Hopkins University

In this talk, I present the Higgs Boson's Compton wavelength (proportional to its inverse mass), as currently one of the few fundamental length-scales in physics, from which much of macroscopic physics is derived. The Standard Model of particle physics predicts a direct relationship between the Higgs mass and the mass of all other fundamental particles, but it fails to predict the mass of the Higgs itself. In fact, the Higgs mass is a conundrum in the Standard Model, as simple (and very reasonable) scaling arguments it should be sixteen orders of magnitude bigger! I will summarize the different approaches to this problem (dubbed the 'hierarchy problem') and show that they all represent a single class of ideas. I will also summarize a second type of idea that relies on anthropic arguments and the existence of a multiverse. Finally, I will present a brand new approach that explains the smallness of the Higgs mass (and thus the largeness of atoms) as a result of cosmological evolution of parameters, and suggest that this fundamental scale in physics may have been a result of something akin to self-organized criticality in the early universe.

PSC Lobby, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu