RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Quantum propagation of light: from photon molecules to many-body physics

October 19, 2016 - 2:00pm
James Douglas
The Institute of Photonic Sciences, Barcelona

Recent experiments have demonstrated that light propagation through ensembles of Rydberg atoms is highly non-linear at the level of individual photons. Other developing platforms, such as circuit QED and atoms coupled to nanophotonic waveguides, also promise the ability to engineer the quantum state of propagating light at the few and many-body limit. Coupled to these experimental advances, effective theoretical descriptions have been produced, modeling the physics in specific instances. However, general numerical techniques are currently limited. Here, we describe an approach to this problem by using a "spin model" that maps the light propagation problem to a system of interacting spins, where all of the photon correlations are obtained from those of the spins. In the few-body limit we use this method to show that in systems of atoms coupled to photonic-crystal waveguides photons can bind together forming molecules. Going beyond this limit, we can use the powerful toolbox of matrix product states to solve the spin problem and study multi photon effects, where as an example we simulate the number dependent pulse velocity in vacuum induced transparency.

CSS 2115

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to