RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Nanoscale probing of magnetic noise near conducting surfaces with single-spin qubits

October 6, 2016 -
2:00pm to 3:30pm
Shimon Kolkowitz

Noise emanating from conductors and their surfaces can limit the coherence times and relaxation rates of many promising quantum information systems, from superconducting qubits and gate-defined quantum dots to atoms and ions on chips. Here we present experimental results demonstrating the use of single electronic spin qubits in diamond to probe the spectral, spatial, and temperature dependent properties of magnetic noise near conductors. Using individual nitrogen vacancy (NV) centers implanted close to the diamond surface, we investigate magnetic Johnson noise at distances down to 10 nm from the metal surface, a length scale not currently achievable in other systems, over a wide range of temperatures, from 6 to 295 K. We observe a significant deviation from the predictions of the Drude model and Ohm’s law arising from the ballistic motion of electrons in the metal, and show that the observed behavior is well described by the introduction of a nonlocal dielectric function. Our approach holds considerable promise for the investigation of more complex condensed matter systems, and we will discuss some potential applications and extensions of this work.

1201 John S. Toll Physics Bldg.

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to