RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Universal Aspects of Quantum Thermalization

June 1, 2016 - 11:00am
Speaker: 
Jim Garrison
Institution: 
University of California Santa Barbara

A very fundamental problem in quantum statistical mechanics involves whether--and how--an isolated quantum system will thermalize at long times.  In quantum systems that do thermalize, the long-time expectation value of any "reasonable" operator will match its predicted value in the canonical ensemble.  The Eigenstate Thermalization Hypothesis (ETH) posits that this thermalization occurs at the level of each individual energy eigenstate; in fact, any single eigenstate in a microcanonical energy window will predict the expectation values of such operators exactly.  In recent work, we have identified, for a generic model system, precisely which operators satisfy ETH, as well as the limits to the information contained in a single eigenstate.  Remarkably, our results strongly suggest that a single eigenstate can contain information about energy densities--and therefore temperatures--far away from the energy density of the eigenstate.  After considering eigenstates, I will return to the more general case of time evolution following a quantum quench, and study which operators thermalize for typical initial states.

CSS 3100 A
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu