RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Random number generation from untrusted quantum devices

January 25, 2016 - 3:30pm
Speaker: 
Carl Miller
Institution: 
U. Michigan

Is it possible to create a source of provable random numbers? If the answer to this question is "yes," it would be of importance in information security, where the safety of protocols such as RSA depends on the ability to generate random encryption keys. Bell inequality violations offer a potential solution: if a device exhibits a Bell inequality violation, then its outputs must have been computed by some quantum process and are therefore random. But, quantifying the amount of randomness that arises by this method is a difficult problem, and it motivates some intricate and beautiful mathematics.

In the talk I will present my work with Yaoyun Shi, which offered the first robust security proof for randomness expansion from Bell inequality violations. Any violation of the Clauser-Horne-Shimony-Holt inequality (as well as others) can be used to produce uniformly random bits. Our proofs, though they involve some mathematical heavy-lifting, ultimately reduce to two simple principles. The first is the notion of self-testing: for some Bell inequalities, a maximal violation allows us to deduce both the state and the measurements used. The second is a principle of measurement disturbance: if a measurement significantly alters a quantum state, then the outcome of the measurement must be random.

References: arXiv:1411.6608 and arXiv:1402.0489

CSS 3100 A
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu