RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Casual models for a quantum world

January 7, 2016 - 2:00pm
Speaker: 
Katja Ried
Institution: 
IQC/Perimeter

Quantum theory is a theory of information, imposing new -- and often counter-intuitive -- rules on how it can be acquired, processed and shared. To understand these rules, one can draw on the framework of causal Bayesian networks, which successfully addresses questions concerning knowledge, causation and inference in the context of classical statistics. The process of adapting classical causal models to accommodate quantum theory provides a new perspective on the fundamental differences between the two.

A central task in causal modeling is to characterize causal relations based solely on observed correlations. In the case of just two systems, we find that quantum coherence (eg entanglement) provides a distinct advantage for this problem, as it is known to do for other tasks such as cryptography and information processing. A linear optics experiment demonstrates this advantage in practice.

[Nat Phys 11, 414 (2015)]

CSS 3100A
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu