RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Silicon Photonics: The Optical Spice Rack

September 15, 2014 - 11:00am
Speaker: 
Michal Lipson
Institution: 
Cornell University

Abstract:

Silicon is evolving as a versatile photonic platform with multiple functionalities that can be seamlessly integrated. The tool box is rich starting from the ability to guide and amplify multiple wavelength sources at GHz bandwidths, to optomechanical MEMS and opto-fluidics devices. As an example of novel device capabilities, I will discuss the generation of strong optical forces in these ultra small light confining structures. We have recently shown that optical forces can enable controllable, static manipulation of photonic structures, an important step towards enabling recently proposed functionalities for optomechanical devices, such as self-aligning and optical corralling behaviour. These advances should enable future micro-optomechanical systems (MOMS) with novel and distinct functionalities.

2400 Computer and Space Sciences
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu