RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Tuning electron-phonon interactions in graphene and its bilayer for sensitive bolometry

July 10, 2014 - 2:00pm
Heli Vora
Stony Brook University

Abstract: Graphene's weak electron-phonon coupling and small electronic heat capacity are of considerable advantage for achieving highly sensitive state-of-the-art bolometers and fast single photon detectors. To design such a radiation detector, it is important to study electron-phonon interaction in graphene and its dependence on temperature, Fermi energy, disorder and number of layers. In this talk, I will discuss our recent experimental study on graphene-superconductor junctions. In these devices, the superconducting contacts effectively confine hot electrons inside a graphene absorber, allowing access to phonon cooling regime at low temperatures. At the same time, the DC transport conductance of the junction serves as a sensitive electron temperature thermometer. We measure the temperature and doping dependence of electron-phonon coupling in single and bilayer graphene. In single layer graphene we demonstrate a disorder modified T3 temperature dependence of phonon cooling power, which agrees with the theoretical predictions. Using an observed inverse Fermi energy dependence of the phonon cooling power in bilayer graphene, we propose a way to achieve even higher sensitivities while maintaining linear device operation.

Host: Jimmy Williams

College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to