RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Towards deterministic preparation of single Rydberg atoms and applications to quantum information processing.

June 25, 2013 - 11:00am
Speaker: 
Carla Hermann
Institution: 
Laboratoire Kastler Brosel

Circular Rydberg atoms and superconducting cavities are remarkable tools for the exploration of basic quantum phenomena and of quantum information processing. The aim of this work is to realize a deterministic source of individual Rydberg atoms. This source, producing atomic qubits on demand, is an essential tool for quantum information experiments in microwave cavity quantum electrodynamics. We plan to use the dipole blockade mechanism in a dense and small sample of ground state Rubidium atoms magnetically trapped in a superconducting atom-chip at 4K. In a simple model, the energy of two atoms in the same Rydberg state is a function of their distance. By tuning the excitation laser at the frequency of the isolated atomic transition, we expect to excite at most one atom within a blockade volume of ~ (5 µm)^3. By controlling the shape of the ultracold cloud and tailoring the excitation laser pulses, we expect to control the final number of Rydberg atoms within the cloud in a deterministic way. We are also exploring the use of the narrow millimeter-wave transitions between Rydberg levels to achieve atom-number selectivity. In parallel with the experimental work, we explore theoretically the possibilities opened by this deterministic source.

2115 CSS Building
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu