RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Engineering Quantum Information Processing Systems

April 29, 2013 - 4:00pm
Speaker: 
Jungsang Kim
Institution: 
Duke University

Abstract
Utilizing unique properties of quantum physics in principle enables computational speeds unmatched by a conventional computer for an important set of problems, and fundamentally secure communication over long distances. On the other hand, the practical technology to construct a functional, scalable quantum computer or quantum communication system remains a major challenge. Trapped ion systems feature long coherence times, high fidelity quantum logic gates, and high quantum efficiency state detection adequate for implementation of high performance quantum computer and quantum repeater. However, similar to transistor technology in the early days, we do not have a scalable technology platform on which large numbers of trapped ions can be integrated, nor an architectural framework for assembling a complex functional circuit capable of executing useful algorithms. In this work, I will describe a systems approach to realizing scalable quantum information processing systems utilizing hardware technology available to us today, and the integration effort currently under way.

Biography
Jungsang Kim received his B.S. degree in Physics in 1992 from Seoul National University (SNU) in Seoul, Korea, and his Ph.D. in Physics from Stanford University in 1999, working on the topic of quantum optics in semiconductor devices. He joined Bell Laboratories in Murray Hill, New Jersey where he served as a Member of Technical Staff and a Technical Manager, developing large-scale MEMS-based optical switches and advanced wireless communication systems. He joined the Department of Electrical and Computer Engineering at Duke University in 2004. His research interest lies in construction of high-performance complex systems, including ion-trap quantum computers, quantum communication networks, and high-performance imaging systems.

This Event is For: Graduate • Undergraduate • Faculty • Post-Docs • Alumni • Corporate

1146 A.V. Williams Building
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu